可再生氢能应用前景 -- 氢的制取
s materials during
fabrication, short circuit and fire during
operation, but not significant
Relatively safe, a little danger exist during
maintenance
Operating at high temperature, risk of
explosion exists; leakage of hydrogen
sulfide
Operating at high temperature, explosion
may occur
由表可见, 生物质气化技术和风能-电解制氢技术具有良好的经济性. 对于环境的污染
以及危险性也相对较小, 极具发展前景, 可以作为大规模制氢技术. 而光伏-电解水技
术则目前还未显示出经济优势. 但由于太阳能资源丰富, 在地球上分布广泛, 如果光
伏电池的效率能进一步提高, 成本能大幅降低, 则是未来很有潜力的制氢技术. 太阳
能热化学循环也是可行的制氢技术, 今后的发展方向是进一步降低分解产物的能量损
耗以及发展更为经济的循环.
香港地少人多, 没有自己的煤, 石油, 天然气, 也没有大规模的农业, 所有能源
目前都依赖进口. 但香港具有丰富的风力资源和充足的太阳能资源, 利用可再生资源
部分解决香港的能源问题是一条值得探讨的思路.
香港总人口681 万, 总面积2757km2, 其中陆地面积1098 km2, 海洋面积1659 km2.
但香港绝大多数人口集中在港岛, 九龙等面积较小的市区, 而新界很多区域以及周边
岛屿则人口较少. 由于香港地处北回归线以南, 日照充足(13MJ/m2/day), 风力强劲
(>6m/s), 具有很大的发展可再生能源的潜力. 简单计算可知, 如果将香港所有陆地面
积安装上效率为10%的光伏电池, 则年发电量可达144.7TWh, 这相当于香港1999 年电
消耗量35.5TWh 的4 倍! 这说明发展光伏技术在香港有很大潜力. 考虑到香港市区人
口稠密, 可以考虑将光伏电池安装在周边岛屿发电, 通过电解槽制氢. 由于光伏-电解
水成本很高, 这一技术还难以大规模应用, 如果光伏成本能大幅度降低, 则在香港发
展光伏制氢具有非常诱人的前景. 另外, Li(2000)[53]进行了在香港发展海上风力发电
的可行性研究. 研究表明, 利用香港东部海域建立一个11 × 24 km 的风力发电机组, 可
以实现年发电2.1 TWh, 这相当于香港用于交通的能源的10%. 此外, 香港周边岛屿,
如横澜岛等, 平均风力都在6.7 m/s 以上, 在这些岛屿发展大规模的风力机组也
进一步探讨的问题. 除此之外, 香港每年产生的大量有机垃圾, 也可以通过气化或热
解制氢. 这些技术在香港的成功应用还需要更深入的研究, 本文不作深入探讨.
6. 小结
本文综述了目前利用可再生资源制氢的主要技术, 介绍了其基本原理, 也涉及到
了各项技术的经济性和环境以及安全方面的问题. 对各项制氢技术进行了对比分析,
总结出利用风能发电再推动电解水, 以及利用生物质的热化学制氢具有良好的经济性,
对环境的污染较小, 技术成熟, 可以作为大规模制氢的选择. 利用光伏-电解水技术具
有诱人的发展前景, 但目前还未显示出其经济性. 而太阳能热化学制氢则处于研究阶
段, 还难以用于大规模制氢. 香港具有比较丰富的可再生资源, 利用风力发电和有机
废物制氢是可行的制氢技术, 而光伏电池还需要大量研究以进一步降低成本. 尽管还
有大量的研究和更深入的分析要做, 利用可再生资源制氢以同时解决污染和能源问题
已经为我们展开了一个良好的前景.
致谢:
本文属<可再生氢能在香港的应用研究>项目, 该课题受香港中华电力公司(CLP)及香港
特别行政区政府资助, 在此表示感谢!
参考文献:
[1] Kazim A, Veziroglu TN. Utilization of Solar-Hydrogen Energy in the UAE to Maintain its
Share in the World Energy Market for the 21st Century [J]. Renewable Energy 2001, 24(2):
259-274.
[2] Abdallah MAH, Asfour SS, Veziroglu TN. Solar-Hydrogen Energy System for Egypt [J],
International Journal of Hydrogen Energy 1999, 24(6): 505-517.
[3] Mao.ZQ. Hydrogen---a Future Clean Energy in China [A], Symposium on Hydrogen
Infrastructure Technology for Energy & Fuel Applications, November 18, 2003. The Hong
Kong Polytechnic University, Hong Kong, 27-33.
[4] Steinfeld A, Palumbo R. Solar thermochemical process technology [J], Encyc 《可再生氢能应用前景 -- 氢的制取(第9页)》
本文链接地址:http://www.oyaya.net/fanwen/view/169607.html
fabrication, short circuit and fire during
operation, but not significant
Relatively safe, a little danger exist during
maintenance
Operating at high temperature, risk of
explosion exists; leakage of hydrogen
sulfide
Operating at high temperature, explosion
may occur
由表可见, 生物质气化技术和风能-电解制氢技术具有良好的经济性. 对于环境的污染
以及危险性也相对较小, 极具发展前景, 可以作为大规模制氢技术. 而光伏-电解水技
术则目前还未显示出经济优势. 但由于太阳能资源丰富, 在地球上分布广泛, 如果光
伏电池的效率能进一步提高, 成本能大幅降低, 则是未来很有潜力的制氢技术. 太阳
能热化学循环也是可行的制氢技术, 今后的发展方向是进一步降低分解产物的能量损
耗以及发展更为经济的循环.
香港地少人多, 没有自己的煤, 石油, 天然气, 也没有大规模的农业, 所有能源
目前都依赖进口. 但香港具有丰富的风力资源和充足的太阳能资源, 利用可再生资源
部分解决香港的能源问题是一条值得探讨的思路.
香港总人口681 万, 总面积2757km2, 其中陆地面积1098 km2, 海洋面积1659 km2.
但香港绝大多数人口集中在港岛, 九龙等面积较小的市区, 而新界很多区域以及周边
岛屿则人口较少. 由于香港地处北回归线以南, 日照充足(13MJ/m2/day), 风力强劲
(>6m/s), 具有很大的发展可再生能源的潜力. 简单计算可知, 如果将香港所有陆地面
积安装上效率为10%的光伏电池, 则年发电量可达144.7TWh, 这相当于香港1999 年电
消耗量35.5TWh 的4 倍! 这说明发展光伏技术在香港有很大潜力. 考虑到香港市区人
口稠密, 可以考虑将光伏电池安装在周边岛屿发电, 通过电解槽制氢. 由于光伏-电解
水成本很高, 这一技术还难以大规模应用, 如果光伏成本能大幅度降低, 则在香港发
展光伏制氢具有非常诱人的前景. 另外, Li(2000)[53]进行了在香港发展海上风力发电
的可行性研究. 研究表明, 利用香港东部海域建立一个11 × 24 km 的风力发电机组, 可
以实现年发电2.1 TWh, 这相当于香港用于交通的能源的10%. 此外, 香港周边岛屿,
如横澜岛等, 平均风力都在6.7 m/s 以上, 在这些岛屿发展大规模的风力机组也
是值得
进一步探讨的问题. 除此之外, 香港每年产生的大量有机垃圾, 也可以通过气化或热
解制氢. 这些技术在香港的成功应用还需要更深入的研究, 本文不作深入探讨.
6. 小结
本文综述了目前利用可再生资源制氢的主要技术, 介绍了其基本原理, 也涉及到
了各项技术的经济性和环境以及安全方面的问题. 对各项制氢技术进行了对比分析,
总结出利用风能发电再推动电解水, 以及利用生物质的热化学制氢具有良好的经济性,
对环境的污染较小, 技术成熟, 可以作为大规模制氢的选择. 利用光伏-电解水技术具
有诱人的发展前景, 但目前还未显示出其经济性. 而太阳能热化学制氢则处于研究阶
段, 还难以用于大规模制氢. 香港具有比较丰富的可再生资源, 利用风力发电和有机
废物制氢是可行的制氢技术, 而光伏电池还需要大量研究以进一步降低成本. 尽管还
有大量的研究和更深入的分析要做, 利用可再生资源制氢以同时解决污染和能源问题
已经为我们展开了一个良好的前景.
致谢:
本文属<可再生氢能在香港的应用研究>项目, 该课题受香港中华电力公司(CLP)及香港
特别行政区政府资助, 在此表示感谢!
参考文献:
[1] Kazim A, Veziroglu TN. Utilization of Solar-Hydrogen Energy in the UAE to Maintain its
Share in the World Energy Market for the 21st Century [J]. Renewable Energy 2001, 24(2):
259-274.
[2] Abdallah MAH, Asfour SS, Veziroglu TN. Solar-Hydrogen Energy System for Egypt [J],
International Journal of Hydrogen Energy 1999, 24(6): 505-517.
[3] Mao.ZQ. Hydrogen---a Future Clean Energy in China [A], Symposium on Hydrogen
Infrastructure Technology for Energy & Fuel Applications, November 18, 2003. The Hong
Kong Polytechnic University, Hong Kong, 27-33.
[4] Steinfeld A, Palumbo R. Solar thermochemical process technology [J], Encyc 《可再生氢能应用前景 -- 氢的制取(第9页)》