基于MC9S12微控制器的发动机高能直接点火控制
足够高,才能可靠燃烧,达到提高经济性和改善排放的目的。高能直接点火的关键是保证在任何工况下都能够提供足够的点火能量。电感储能式点火系统控制点火能量的实质是控制点火线圈在断电时刻的初级电流,这是靠控制初级电路的通电时间来实现的。点火时刻初级电流所能达到的值,即初级断开电流,与初级电路导通的时间长短有关,必须保证初级电路的通电时间来使初级电流达到点火能量的要求。但如果通电时间过长,点火线圈又会发热并使电能消耗增大。因此,控制一个最佳的初级电路通电时间需兼顾上述两方面的要求。
综上所述,对于六缸发动机的高能直接点火系统,为保证发动机的性能要求,需按点火顺序、点火时刻和点火能量的要求实现六个独立点火线圈初级电路的适时通、断电,即微控制器要完成多通道的复杂时序控制。
2ECU的硬件结构设计
如图2所示,适用于六缸发动机的高能直接点火电子控制单元以MC9S12DP256微控制器为核心,并由电源、输入信号整形处理、驱动放大电路和通讯电路等功能模块构成。
MC9S12DP256微控制器采用了高性能的16位处理器HCS12,可提供丰富的指令系统,具有较强的数值运算和逻辑运算能力;其内256K字节的FLASH存储器具有在线编程能力,4K字节的EEPROM和12K字节的RAM可存储各种控制参数。MC9S12DP256的低功耗晶振、复位控制、看门狗及实时中断等配置和功能更有助于系统的可靠运行[2]。
MC9S12DP256丰富的接口资源为ECU输入输出功能的实现提供了方便。负荷信号(节气门位置和进气压力)、水温信号、蓄电池电压信号等系统模拟输入信号由放大滤波电路处理后,利用MCU的A/D转换模块进行采集。通过MCU增强型串行通讯模块SCI可实现与PC机之间的通讯功能,进行点火系统运行状态监控和控制参数的匹配标定。由一个16位主定时器和8个可编程输入捕捉/输出比较定时通道构成的增强型捕捉定时器提供了较强的定时控制功能,可充分满足高能直接点火的复杂时序控制要求。在本系统中,两个定时通道设置为输入捕捉功能,对经过整形处理后的曲轴位置信号和发动机转速信号进行采集处理;另六个定时通道设置为输出比较功能,用于六上汽缸的点火线圈初级电路的通断电控制。
3ECU的控制软件设计
3.1点火时序的控制方法
点火时序的控制以发动机曲轴位置信号为依据。曲轴位置信号通过安装于凸轮轴每转一周,产生七个脉冲信号,其中六个为各缸的点火基准信号,根据发动机的点火顺序,按1、5、3、6、2、4的缸号顺序均匀排列,各基准脉冲信号的上升沿设置在对应各缸压缩行程上止点前40°,相邻基准信号间相差120°的曲轴转角。另一个附加的脉冲信号在一缸基准脉冲信号后,其上升沿对应于1号缸的上止点,用于控制系统判定1号缸的位置,使点火系统与发动机的工作同步,称为判缸同步信号。
MCU利用定时器输入捕捉与输出比较功能的配合,采用延时计数法进行点火线圈初级电路通断电时序控制。如图3所示,每缸基准信号的上升沿通过MCU输入捕捉定时器通道触发中断,并以此中断信号作为一个控制周期的开始和点火时序控制的基准。将每相邻两基准信号间的时间作为一个控制周期(对应曲轴120°转角),控制周期时间等于主计数器的时钟周期与两基准间计数值差的乘积,前者是由MCU预设的常数,记作TC;后者可通过输入捕捉通道测得,记作NG。 《基于MC9S12微控制器的发动机高能直接点火控制(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/170295.html
综上所述,对于六缸发动机的高能直接点火系统,为保证发动机的性能要求,需按点火顺序、点火时刻和点火能量的要求实现六个独立点火线圈初级电路的适时通、断电,即微控制器要完成多通道的复杂时序控制。
2ECU的硬件结构设计
如图2所示,适用于六缸发动机的高能直接点火电子控制单元以MC9S12DP256微控制器为核心,并由电源、输入信号整形处理、驱动放大电路和通讯电路等功能模块构成。
MC9S12DP256微控制器采用了高性能的16位处理器HCS12,可提供丰富的指令系统,具有较强的数值运算和逻辑运算能力;其内256K字节的FLASH存储器具有在线编程能力,4K字节的EEPROM和12K字节的RAM可存储各种控制参数。MC9S12DP256的低功耗晶振、复位控制、看门狗及实时中断等配置和功能更有助于系统的可靠运行[2]。
MC9S12DP256丰富的接口资源为ECU输入输出功能的实现提供了方便。负荷信号(节气门位置和进气压力)、水温信号、蓄电池电压信号等系统模拟输入信号由放大滤波电路处理后,利用MCU的A/D转换模块进行采集。通过MCU增强型串行通讯模块SCI可实现与PC机之间的通讯功能,进行点火系统运行状态监控和控制参数的匹配标定。由一个16位主定时器和8个可编程输入捕捉/输出比较定时通道构成的增强型捕捉定时器提供了较强的定时控制功能,可充分满足高能直接点火的复杂时序控制要求。在本系统中,两个定时通道设置为输入捕捉功能,对经过整形处理后的曲轴位置信号和发动机转速信号进行采集处理;另六个定时通道设置为输出比较功能,用于六上汽缸的点火线圈初级电路的通断电控制。
3ECU的控制软件设计
3.1点火时序的控制方法
点火时序的控制以发动机曲轴位置信号为依据。曲轴位置信号通过安装于凸轮轴每转一周,产生七个脉冲信号,其中六个为各缸的点火基准信号,根据发动机的点火顺序,按1、5、3、6、2、4的缸号顺序均匀排列,各基准脉冲信号的上升沿设置在对应各缸压缩行程上止点前40°,相邻基准信号间相差120°的曲轴转角。另一个附加的脉冲信号在一缸基准脉冲信号后,其上升沿对应于1号缸的上止点,用于控制系统判定1号缸的位置,使点火系统与发动机的工作同步,称为判缸同步信号。
MCU利用定时器输入捕捉与输出比较功能的配合,采用延时计数法进行点火线圈初级电路通断电时序控制。如图3所示,每缸基准信号的上升沿通过MCU输入捕捉定时器通道触发中断,并以此中断信号作为一个控制周期的开始和点火时序控制的基准。将每相邻两基准信号间的时间作为一个控制周期(对应曲轴120°转角),控制周期时间等于主计数器的时钟周期与两基准间计数值差的乘积,前者是由MCU预设的常数,记作TC;后者可通过输入捕捉通道测得,记作NG。 《基于MC9S12微控制器的发动机高能直接点火控制(第2页)》