保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 石油能源论文 >> 正文

液氢的生产及应用


  O引言
  氢是一种理想的清洁能源。当前主要用作运载火箭的推进剂,在不久的将来,氢将成为飞机、汽车甚至家
  用燃料。氢还是一种能量转换和能量贮存的重要载体。氢作为燃料或作为能量载体,较好的使用和贮存方式之一是液氢。因此液氢的生产是氢能开发应用的重要环节之一。本文着重讨论液氢的生产问题。
  氢气的转化温度很低,最高为20.4K,所以只有将氢气预冷却到该温度以下,再节流膨胀才能产生冷效
  应。这一特性对氢气的液化过程会产生一定的困难。
  氢分子由两个氢原子组成,由于两个原子核自旋方向不同,存在着正、仲两种状态。正氢(O-H2)的两个原子核自旋方向相同,仲氢(p-H2)的两个原子核自旋方向相反。正、仲态的平衡组成随温度而变,在不同温度下处于正、仲平衡组成状态的氢称为平衡氢(e一H2)。表1列出了不同温度时平衡氢中仲氢的浓度。
  
  
  
  常温时,含75%正氢和25%仲氢的平衡氢,称为正常氢或标准氢(n-H2)。高温时,正仲态的平衡组成不变;低于常温时,正一仲态的平衡组成将随温度而变。温度降低,仲氢浓度增加。在液氢的标准沸点时,仲氢浓度为99.8%。在氢的液化过程中,如不进行正一仲催化转化,则生产出的液氢为正常氢,液态正常氢会自发地发生IE仲态转化,最终达到相应温度下的平衡氢,氢的正。仲转化是一放热反应,正常氢转化成相同温度下的平衡氢所释放的热量见表2。由表2可见,液态正常氢转化时放出的热量超过气化潜热(447kl/kg)。由于这一原因,即使将液态正常氢贮存在一个理想绝热的容器中,液氢同样会发生气化;在开始的24小时内,液氢大约要蒸发损失18%,100小时后损失将超过40%。不过这种自发转化的速率是很缓慢的,为了获得标准沸点下的平衡氢,即仲氢浓度为99.8%的液氢,在氢的液化过程中,必需进行数级正。仲催化转化。
  
  
  
  1氢液化循环
  由于氢的临界温度和转化温度低,汽化潜热小,其理论最小液化功在所有气体当中是最高的,所以液化比较困难。在液化过程中进行正。仲氢催化转化是一个放热反应,反应温度不同,所放热量不同;使用不同的催化剂,转化效率也不相同。因此,在液化工艺流程当中使用何种催化剂,如何安排催化剂温度级,对液氢生产和贮存都是十分重要的。在液氢温度下,除氦气之外,所有其他气体杂质均已固化,有可能堵塞液化系统管路,尤其固氧阻塞节流部位,极易引起爆炸。所以,对原料氢必须进行严格纯化。生产液氢一般可采用三种液化循环,即节流氢液化循环、带膨胀机的氢液化循环和氦制冷氢液化循环。在这三种基本液化循环中,又派生出多种不同的液化循环,这里仅从每种当中选择一个加以简要说明。
  1节流氢液化循环
  节流循环是1895年由德国的林德和英国的汉普逊分别独立提出的,所以也叫林德(或汉普逊)循环。节流循环是工业上最早采用的气体液化循环,因为这种循环的装置简单,运转可靠,在小型气体液化循环装置中被广泛采用。由于氢的转化温度低,在低于80K时进行节流才有较明显的制冷效应。因此,采用节流循环液化氢时,必须借助外部冷源(如液氮)进行预冷。实际上,只有压力高达10-15MPa,温度降至50-70K时进行节流,才能以较理想的液化率(24-25%)获得液氢。节流氢液化循环流程:气氢经压机压缩后,经高温换热器1、液氮槽:、主换热器亚换热降温,节流后进入液氢槽N,部分被液化的氢积存在液氢槽内,未液化的低压氢气返流复热后回压机。航天工业总公司101所于1966年建成投产的100L/h氢液化装置的流程与上述流程的不同之处有两点:一是为了降低液氮槽内的液氮蒸发温度,在氮蒸汽管道上设置了真空泵乙二是在液氮槽内和液氢槽内设置了两个装有四氧化三铁催化剂的正一仲氢转化器。在氢气压力为13-15MPa,液氮蒸发温度为66K左右时,生产正常氢的液化率可达25%(100L/h),生产液态仲氢(仲氢浓度大于95%)时,液化率将下降30%,即每小时生产70L液态仲氢。该装置自1966年建成投产到80年代未退役之前,所生产的液氢基本上满足了我国第一代氢一氧发动机研制试验的需要。1.2带膨胀机的氢液化循环
  1902年法国的克劳特首先实现了带有活塞式膨胀机的空气液化循环,所以带膨胀机的液化循环也叫克劳特液化循环。理论证明:在绝热条件下,压缩气体经膨胀机膨胀并对外作功,可获得更大的温降和冷量。因此,目前在气体液化和分离设备中,带膨胀机的液化循环的应用最为广泛。膨胀机分两种:活塞式膨胀机和透平膨胀机。中高压系统采用活塞式膨胀机,低压液化系统则采用透平膨胀机。美国日产30吨液氢装置采用带透平膨胀机的大型氢液化循环。该流程由压力为4MPa和带透平膨胀机的双压氢制冷循环组成,并采用常压(0.1MPa)液氮(80K)和负压(0.013MPa)液氮(65K)两级预冷。在这一循环中,大部分冷量由液氮和冷氮气提供,65K以下的冷量由中压(0.7MPa)循环氢系统中的透平膨胀机和高压(4.5MPa)循环氢系统中的两级节流提供。原料氢在整个液化过程中,在6个温度级进行正。仲催化转化,最后可获得仲氢浓度大于95%的液氢。
  1.3氦制冷氢液化循环
  这种循环用氦作为制冷工质,由氦制冷循环提供氢冷凝液化所需的冷量。航天工业总公司101所1995年从《瑞士林德公司》引进的300L/h氢液化装置采用氦制冷氢液化循环。
  (1)氦制冷循环氦制冷循环是一个封闭循环,气体氦经单级螺杆式压缩机2,增压到约1.3MPa;通过粗油分离器3,将大部分油分离出去;氦气在水冷热交
  
  
  
  换器4中被冷却;氦中的微量残油由残油清除器6和活性炭除油器8彻底清除。干净的压缩氦气进入冷箱内的第一热交换器10,在此被降温至97K。通过液氮冷却的第二热交换器11、低温吸附器13和第三热交换器15,氦气进一步降温到52K。利用两台串联工作的透平

《液氢的生产及应用》
本文链接地址:http://www.oyaya.net/fanwen/view/171822.html

★温馨提示:你可以返回到 石油能源论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。