TigerSHARC DSP在信号处理系统中的应用
可以采用二次对消器来实现,其
差分方程为:
y(n)=x(n)-2x(n-1)+x(n-2)
对于每个距离单元,它都需要取三个数、做两个减法、一个加法并存储一个数,这样,完成1200个距离单元的二次对消大约需要25μs。因此,脉冲压缩和固定杂波二次对消只需要一片DSP便可完成,而且还有较多时间富余。
3.2动目标检测(MTD)
用FFT实现窄带多谱勒滤波器组时,为了降低旁瓣,可在系统中采用滑窗加权FFT的方法,权系数为海明权,即:
S(k)=FFT{S(n)W(n)}?n=0,1,2,…N-1
其中S(n)为雷达回波序列,而W(n)则可用下式表示:
W(n)=0.54-0.46cos[2πn/(N-1)]
n=0,1,2,…N-1
TigerSHARCDSP做16点加权复数FFT大约需要80个指令周期?0.32μs?,因此,当距离单元数为1200时,共需384μs。这样,此滑窗多谱勒滤波器组?考虑到运算的辅助操作?仅需要两片TigerSHARCDSP就可实现并行处理,且还有较多的富余时间。
3.3求模
求模可采用如下近似公式:
一般情况下,求模须对每个距离单元的16个通道FFT输出进行运算。TigerSHARCDSP做一个16通道的求模运算需要0.5μs,距离单元数为1200时,共需600μs?故可由两片TigerSHARCDSP并行处理。
3.4恒虚警
恒虚警算法框图如图3所示。
该算法可充分利用TigerSHARCDSP的双运算模块,同时并行处理两个距离单元的两个通道,完成1200个距离单元的16个通道的恒虚警计算共需500μs,故可用DSP3和DSP4并行处理。
3.5积累
积累可采用简单累加求平均的方式,由于其计算量较少,因此,用一片TigerSHARCDSP实现仍有较大时间富余。
综上所述,由TigerSHARCDSP构成的高速信号处理系统总共仅需6片DSP,即可对不同的距离单元段进行并行处理。
4TigerSHARCDSP特殊的复位方式
TigerSHARCDSP的上电复位波形较为特殊,在设计时应充分重视,建议采用CPLD实现其复位。上电复位波形要求如图4所示。但应注意以下几点:
(1)tSTART_LO在供电稳定之后必须至少大于1ms?
(2)tPULSE1_HI必须大于50个系统时钟周期,同时小于100个系统时钟周期;
(3)tPULSE2_LO必须大于100个系统时钟周期。
(4)在DSP上电后,如需正常复位,其低电平持续时间必须大于100个系统时钟周期。
本系统采用EP1K50产生上电复位波形和时序控制。由于EP1K50需要一个配置芯片,而且它和DSP存在一个上电先后的问题。也就是说,在上电后,如果CPLD芯片完成配置文件的读入时,DSP仍未上电稳定,则应充分延长Tstart_lo的低电平时间,以避免DSP上电未稳定而CPLD上电波形已结束。因此,应保证DSP上电稳定先于CPLD芯片配置文件的读入,此问题在系统设计时应予以充分重视,否则DSP将无法正常工作。
5电源供电及功耗估计
TigerSHARCDSP有三个电源,其中数字3.3V为I/O供电;数字1.2V为DSP内核供电;模拟1.2V为内部锁相环和倍频电路供电。TigerSHARCDSP要求数字3.3V和1.2V应同时上电。若无法严格同步,则应保证内核电源1.2V先上电,I/O电源3.3V后上电。本系统在数字3.3V输入端并联了一个大电容,而在数字1.2V输入端并联了一个小电容,其目的就是为了保证3.3V充电时间大于1.2V充电时间,以便很好地解决电源供电先后的问题。
5.1内核功耗估计
内核最大电流为1.277A,该电流是DSP进行单指令多数据(SIMD)方式下,4个16位定点字乘加与两个四字读取并行操作以及进行由外部口到内部存储器DMA操作所需的电流。实际上,DSP内核电流大小还和
内核工作频率有关,图5所示 《TigerSHARC DSP在信号处理系统中的应用(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/174855.html
差分方程为:
y(n)=x(n)-2x(n-1)+x(n-2)
对于每个距离单元,它都需要取三个数、做两个减法、一个加法并存储一个数,这样,完成1200个距离单元的二次对消大约需要25μs。因此,脉冲压缩和固定杂波二次对消只需要一片DSP便可完成,而且还有较多时间富余。
3.2动目标检测(MTD)
用FFT实现窄带多谱勒滤波器组时,为了降低旁瓣,可在系统中采用滑窗加权FFT的方法,权系数为海明权,即:
S(k)=FFT{S(n)W(n)}?n=0,1,2,…N-1
其中S(n)为雷达回波序列,而W(n)则可用下式表示:
W(n)=0.54-0.46cos[2πn/(N-1)]
n=0,1,2,…N-1
TigerSHARCDSP做16点加权复数FFT大约需要80个指令周期?0.32μs?,因此,当距离单元数为1200时,共需384μs。这样,此滑窗多谱勒滤波器组?考虑到运算的辅助操作?仅需要两片TigerSHARCDSP就可实现并行处理,且还有较多的富余时间。
3.3求模
求模可采用如下近似公式:
一般情况下,求模须对每个距离单元的16个通道FFT输出进行运算。TigerSHARCDSP做一个16通道的求模运算需要0.5μs,距离单元数为1200时,共需600μs?故可由两片TigerSHARCDSP并行处理。
3.4恒虚警
恒虚警算法框图如图3所示。
该算法可充分利用TigerSHARCDSP的双运算模块,同时并行处理两个距离单元的两个通道,完成1200个距离单元的16个通道的恒虚警计算共需500μs,故可用DSP3和DSP4并行处理。
3.5积累
积累可采用简单累加求平均的方式,由于其计算量较少,因此,用一片TigerSHARCDSP实现仍有较大时间富余。
综上所述,由TigerSHARCDSP构成的高速信号处理系统总共仅需6片DSP,即可对不同的距离单元段进行并行处理。
4TigerSHARCDSP特殊的复位方式
TigerSHARCDSP的上电复位波形较为特殊,在设计时应充分重视,建议采用CPLD实现其复位。上电复位波形要求如图4所示。但应注意以下几点:
(1)tSTART_LO在供电稳定之后必须至少大于1ms?
(2)tPULSE1_HI必须大于50个系统时钟周期,同时小于100个系统时钟周期;
(3)tPULSE2_LO必须大于100个系统时钟周期。
(4)在DSP上电后,如需正常复位,其低电平持续时间必须大于100个系统时钟周期。
本系统采用EP1K50产生上电复位波形和时序控制。由于EP1K50需要一个配置芯片,而且它和DSP存在一个上电先后的问题。也就是说,在上电后,如果CPLD芯片完成配置文件的读入时,DSP仍未上电稳定,则应充分延长Tstart_lo的低电平时间,以避免DSP上电未稳定而CPLD上电波形已结束。因此,应保证DSP上电稳定先于CPLD芯片配置文件的读入,此问题在系统设计时应予以充分重视,否则DSP将无法正常工作。
5电源供电及功耗估计
TigerSHARCDSP有三个电源,其中数字3.3V为I/O供电;数字1.2V为DSP内核供电;模拟1.2V为内部锁相环和倍频电路供电。TigerSHARCDSP要求数字3.3V和1.2V应同时上电。若无法严格同步,则应保证内核电源1.2V先上电,I/O电源3.3V后上电。本系统在数字3.3V输入端并联了一个大电容,而在数字1.2V输入端并联了一个小电容,其目的就是为了保证3.3V充电时间大于1.2V充电时间,以便很好地解决电源供电先后的问题。
5.1内核功耗估计
内核最大电流为1.277A,该电流是DSP进行单指令多数据(SIMD)方式下,4个16位定点字乘加与两个四字读取并行操作以及进行由外部口到内部存储器DMA操作所需的电流。实际上,DSP内核电流大小还和
内核工作频率有关,图5所示 《TigerSHARC DSP在信号处理系统中的应用(第2页)》