DSP芯片在超声波钻井液测漏仪中的应用
传播速度,V为泥浆流速。
由于C>>V,所以C2-V2≈C2,因此有:
V=ΔtC2/2L(4)
可见,只要测出时间差Δt,就可以求出泥浆流速,从而推断井下漏失情况。漏层位置是通过时间与深度的换算关系确定的,地面计算机与井下测量电路在同一时刻开始计时,由于地面可以方便地掌握仪器的下井深度,而井下仪器又可记录任意时间点的泥浆流速,当仅器提升到地面后,将记录的数据回放到计算机,就可知道位置深度处的流速。
图2
2DSP的应用
2.1测漏仪电路结构
测漏仪电路结构如图2所示。图中IC1是DSP芯片,这里采用TI公司的TMS320VC33浮点数字信号处理器,它是整个测量电路的核心,其指令周期为17ns,字长为32位,扩展精度为40位,内部存储器容量为34K×32bit,可寻址空间为16M,具有一个32位的串口、一个DMA通道、两个定时器、两个外部中断源;芯片的供电电压为3.3V,内核供电电压为1.8V,由IC5提供。由于芯片的运行速度很高,为了防止外部振荡电路的过高频率引起射频干扰,对外接振荡器采用了内部倍频技术。
2.2接口技术
图2中的IC2为DS1251存储器,它是一种非易失性的存储器,其输出电压高电平为5V。但TMS320VC33的I/O电平为3.3V,不能承受高电平为5V的TTL信号。为了使TMS320VC33与DS1251能够交换数据,电路中采用IC3(74LVC164244)实现3.3V与5V电平的转换。该芯片同时具有3.3V和5V两种供电电源,与DSP相连的I/O脚电平为3.3V,与存储器相连的I/O脚电平为5V。
2.3引导
引导(BootLoader)是将在存储在外部程序存储器中的程序代码一次性地全部加载到DSP芯片内部的高速存储器中,以实现程序指令的高速运行。TMS320VC33有四种引导方式,其中前三种方式是从外部存储器引导,第四种方式是从串行口引导。它们都是通过将四个外部中断引脚INT0~INT3中的某一个设置为低电平而实现的。本文采用表1中所示的第二种引导方式,即DSP从400000H开始引导程序。
将用户程序加载到DSP的片内高速RAM是由DSP的片内ROM的驻机程序(出厂时已设置)完成的。上电后,DSP的复位引脚由“0”变为“1”,同时在电路连接上保证引脚MCBL/MP="1",固化在片内的引导程序查询INT0~INT3中的哪一个为低,并按表1所示的中断脚与地址的对应关系进行引导。
表1引导方式
方式INT0INT1INT2INT3说明首地址10111外部存储器1000H21011外部存储器400000H31101外部存储器FFF000H41110串口
被引导的用户程序必须事先经过汇编、连接,以生成DSP能够认识的机器代码。在生成的程序代码前还必须加入一个引导头。引导头的具体结构见参考文件,其作用是:
(1)实现字长为32位的DSP与8位、16位或32位外部程序存储器的接口。
(2)实现高速DSP与低速ROM的接口。
(3)实现用户程序与DSP与内存储空间的匹配。
2.4数据处理
采用TMS 《DSP芯片在超声波钻井液测漏仪中的应用(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/174954.html
由于C>>V,所以C2-V2≈C2,因此有:
V=ΔtC2/2L(4)
可见,只要测出时间差Δt,就可以求出泥浆流速,从而推断井下漏失情况。漏层位置是通过时间与深度的换算关系确定的,地面计算机与井下测量电路在同一时刻开始计时,由于地面可以方便地掌握仪器的下井深度,而井下仪器又可记录任意时间点的泥浆流速,当仅器提升到地面后,将记录的数据回放到计算机,就可知道位置深度处的流速。
图2
2DSP的应用
2.1测漏仪电路结构
测漏仪电路结构如图2所示。图中IC1是DSP芯片,这里采用TI公司的TMS320VC33浮点数字信号处理器,它是整个测量电路的核心,其指令周期为17ns,字长为32位,扩展精度为40位,内部存储器容量为34K×32bit,可寻址空间为16M,具有一个32位的串口、一个DMA通道、两个定时器、两个外部中断源;芯片的供电电压为3.3V,内核供电电压为1.8V,由IC5提供。由于芯片的运行速度很高,为了防止外部振荡电路的过高频率引起射频干扰,对外接振荡器采用了内部倍频技术。
2.2接口技术
图2中的IC2为DS1251存储器,它是一种非易失性的存储器,其输出电压高电平为5V。但TMS320VC33的I/O电平为3.3V,不能承受高电平为5V的TTL信号。为了使TMS320VC33与DS1251能够交换数据,电路中采用IC3(74LVC164244)实现3.3V与5V电平的转换。该芯片同时具有3.3V和5V两种供电电源,与DSP相连的I/O脚电平为3.3V,与存储器相连的I/O脚电平为5V。
2.3引导
引导(BootLoader)是将在存储在外部程序存储器中的程序代码一次性地全部加载到DSP芯片内部的高速存储器中,以实现程序指令的高速运行。TMS320VC33有四种引导方式,其中前三种方式是从外部存储器引导,第四种方式是从串行口引导。它们都是通过将四个外部中断引脚INT0~INT3中的某一个设置为低电平而实现的。本文采用表1中所示的第二种引导方式,即DSP从400000H开始引导程序。
将用户程序加载到DSP的片内高速RAM是由DSP的片内ROM的驻机程序(出厂时已设置)完成的。上电后,DSP的复位引脚由“0”变为“1”,同时在电路连接上保证引脚MCBL/MP="1",固化在片内的引导程序查询INT0~INT3中的哪一个为低,并按表1所示的中断脚与地址的对应关系进行引导。
表1引导方式
方式INT0INT1INT2INT3说明首地址10111外部存储器1000H21011外部存储器400000H31101外部存储器FFF000H41110串口
被引导的用户程序必须事先经过汇编、连接,以生成DSP能够认识的机器代码。在生成的程序代码前还必须加入一个引导头。引导头的具体结构见参考文件,其作用是:
(1)实现字长为32位的DSP与8位、16位或32位外部程序存储器的接口。
(2)实现高速DSP与低速ROM的接口。
(3)实现用户程序与DSP与内存储空间的匹配。
2.4数据处理
采用TMS 《DSP芯片在超声波钻井液测漏仪中的应用(第2页)》