保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

一种快速数字AGC结构的分析与设计


独立于输入信号电平。所以环路具有稳定的时常数。图4是图3所示的环路的仿真结果。与图2所示的不同,这里的AGC控制电压(底部图形)具有一致的上升和下降时间,它并不是输入振幅跳变的函数。 图4 QPSK 且a=0.1的对数AGC环仿真图 5 指数AGC算法 另一种环路通过对修正信号进行指数加权可具有与图4所示的环路相同的响应。这种算法通过用一个非线性函数衰减控制电压而达到在环路动态范围内降低小幅信号跳变的影响的效果。该算法的表达如下: y(n 1) = x(n)*exp(a(n)) (10) 其中:y(n) 是 AGC 输出,x(n) 是 AGC 输入,a(n) 是 AGC 控制电压。于是误差信号为: e(n) = r-abs(y(n)) (11) 其中 r 是参考电平。应用式(10)和(11),增益控制为: a(n 1) = a(n) a*e(n) (12) 其中 a 是小于1的收敛因子。这里的非线性体现在a(n)的指数表达。图5是对a=0.1的 QPSK 信号应用此算法的性能仿真。

图5 QPSK且a=0.1的指数AGC 算法性能分析

  6 数字AGC的设计实现 根据对以上环路算法的分析及仿真,我们提出了基于码元幅值对数AGC算法的实现方法,如图6,利用输出信号作为对数变换Rom的地址,对信号取对数,然后与门限电平R相减得到误差电平,再乘以增益a得到补偿值,并将该值累加后作为反对数变换Rom的地址,取其反对数,最后于输入信号相乘,调整输入信号的电平,使其保持稳定的幅度,其中的门限R和增益a根据具体需要设定。 图6 基于码元幅值对数AGC算法的实现框图

  7 结束语 该结构已在Xilinx Virtex 2V 3000型FPGA中实现,AGC的起控时间较短,能够很好发地起到控制信号电平的效果。 参考文献 [1] 张贤达,保铮. 通信信号处理. 北京:国防工业出版社,2000.12 [2] 姚天任,孙洪. 现代数字信号处理. 武汉:华中理工大学出版社,1999.6 《一种快速数字AGC结构的分析与设计(第2页)》

本文链接地址:http://www.oyaya.net/fanwen/view/176406.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。