保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教案大全 >> 数学教案 >> 初一数学教案 >> 正文

有理数的除法


教学目标

  1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

  2.了解倒数概念,会求给定有理数的倒数;

  3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。

教学建议

  (一)重点、难点分析

  本节教学的重点是熟练进行有理数的除法运算,教学难点是理解有理数的除法法则。

  1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。

  2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。

  (二)知识结构

   

  (三)教法建议

  1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

  2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

  3.理解倒数的概念

  (1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。

  (2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

  (3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。

  4.关于倒数的求法要注意:

  (1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.

  (2)正数的倒数是正数,负数的倒数仍是负数.

  (3)负倒数的定义:乘积是-1的两个数互为负倒数.
教学设计示例

有理数的除法

  一、素质教育目标

  (一)知识教学点

  1.了解有理数除法的定义.

  2.理解倒数的意义.

  3.掌握有理数除法法则,会进行有理数的除法运算.

  (二)能力训练点

  1.通过有理数除法法则的导出及运算,让学生体会转化思想.

  2.培养学生运用数学思想指导思维活动的能力.

  (三)德育渗透点

  通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  (四)美育渗透点

  把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力.

  2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:除法法则的灵活运用和倒数的概念.

  2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

  3.疑点:对零不能作除数与零没有倒数的理解.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片、彩粉笔.

  六、师生互动活动设计

  教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了有理数的乘法,这节我们应该学习有理数的除法,板书课题.

  【教法说明】有理数的除法同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习有理数的除法.

  (二)探索新知,讲授新课

  1.倒数.

  (出示投影1)

  4×( )=1;  ×( )=1;  0.5×( )=1;
  0×( )=1;  -4×( )=1;  ×( )=1.

  学生活动:口答以上题目.

  【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

  师问:两个数乘积是1,这两个数有什么关系?

  学生活动:乘积是1的两个数互为倒数.(板书)

  师问:0有倒数吗?为什么?

  学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

  师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

  提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

  【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

  (出示投影2)

  求下列各数的倒数:

  (1);  (2);  (3);
  (4); (5)-5;  (6)1.

  学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

  2.有理数的除法

  计算:8÷(-4).

  计算:8×()=? (-2)

  ∴8÷(-4)=8×().

  再尝试:-16÷(-2)=? -16×()=?

  师:根据以上题目,你能说出怎样计算有理数的除法吗?能用含字母的式子表示吗?

  学生活动:同桌互相讨论.(一个学生回答)

  师强调后板书:

  [板书]

   

  【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

  (三)尝试反馈,巩固练习

  师在黑板上出示例题.

  计算(1)(-36)÷9, (2)()÷().

  学生尝试做此题目.

  (出示投影3)

  1.计算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.计算:

  (1)()÷(); (2)(-6.5)÷0.13;

  (3)()÷(); (4)÷(-1).

  学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).

  【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

  提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

  学生活动:分组讨论,1—2个同学回答.

  [板书]

  2.两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何不等于0的数,都得0

  【教法说明】通过上组练习的结果,不难看出有理数的除法与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

  (四)变式训练,培养能力

  回顾例1   计算:(1)(-36)÷9; (2)()÷().

  提出问题:每个题目你想采用哪种法则计算更简单?

  学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

           (2)题仍用除以一个数等于乘以这个数的倒数较简单.

  提出问题:-36:9=?;:()=?它们都属于除法运算吗?

  学生活动:口答出答案.

  (出示投影4)

  例2  化简下列分数

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3  计算

  (1)()÷(-6); (2)-3.5÷×();

  (3)(-6)÷(-4)×().

  学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

  【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

  如在(1)()÷(-6)中.

  根据方法①()÷(-6)=×()=.

  根据方法②()÷(-6)=(24+)×=4+=.

  让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

  (五)归纳小结

  师:今天我们学习了有理数的除法及倒数的概念,回答问题:

  1.的倒数是__________________();

  2.;

  3.若、同号,则;

  若、异号,则;

  若,时,则;

  学生活动:分组讨论,三个学生口答.

  【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

  八、随堂练习

  1.填空题

  (1)的倒数为__________,相反数为____________,绝对值为___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互为倒数,则;

  (7)或、互为相反数且,则,;

  (8)当时,有意义;

  (9)当时,;

  (10)若,,则,和符号是_________,___________.

  2.计算

  (1)-4.5÷()×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作业

  (一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

  2.计算:(1)()×()÷();

  (2)-6÷(-0.25)×.

  3.当,,时求的值.

  (二)选做题:1.填空:用“>”“<”“=”号填空

  (1)如果,则,;

  (2)如果,则,;

  (3)如果,则,;

  (4)如果,则,;

  2.判断:正确的打“√”错的打“×”

  (1)( );

  (2)( ).

  3.(1)倒数等于它本身的数是______________.

  (2)互为相反数的数(0除外)商是________________.

  【教法说明】必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

  选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

  十、板书设计

  


《有理数的除法》
本文链接地址:http://www.oyaya.net/fanwen/view/176489.html

  • 上一篇范文: 有理数的加法
  • 下一篇范文: 方程的简单变形(华师大版.教案)

  • ★温馨提示:你可以返回到 初一数学教案 也可以利用本站页顶的站内搜索功能查找你想要的文章。