ADC信噪比的分析及高速高分辨率ADC电路的实现
述两种内部噪声。
上述误差和噪声的存在,导致ADC的SNR下降。下面先给出理想ADC的SNR计算公式,然后具体分析微分非线性误差DNL、孔径抖动△tj和热噪声对ADC的SNR的影响。
1.1理想ADC的SNR
理想ADC的量化误差g(υ)与满量程内输入信号的电压V的关系如图1所示。量化误差为在[-q/2,q/2]内均匀分布且峰-峰值等于q(q=1LSB,LSB表示理想ADC的最小量化间隔)的锯齿波信号。
设N位ADC满量程电压为±1V,输入信号为s(t)=sinωt,则输入信号电压有效值Vs=1/√2=2N/2√2×q,量化噪声电压有效值于是得ADC输出信噪比为:
SNR=6.02N+1.76(dB)(2)
1.2微分非线性误差DNL
非理想ADC的量化间隔是非等宽的,这将导致ADC器件不能完全正确地把模拟信号转化成相应的二进制码,从而造成SNR的下降;且ADC每个量化的二进制码所对应的量化间隔都不同,为便于分析,用ε(LSB)=εq表示实际量化间隔与理想量化间隔误差的有效值,并近似认为由于DNL的影响,在无失码条件(DNL<1LSB)下,量化误差均匀分布在[-上q+εq/2,q+εq/2]和[-q-εq/2,q-εq/2]内。如图1中实线所示(虚线伪理想ADC量化误差)。这样,在考虑了DNL之后的ADC量化噪声电压Vq_DNL为:
1.3孔径抖动△tj
孔径时间又称孔径延迟时间,是指对ADC发出采样命令(采样时钟边沿)时刻与实际开始采样时刻之间的时间间隔。相邻两次采样的孔径时间的偏差称为孔径抖动,记作△tj。孔径抖动造成了信号的非均匀采样,引起了误差,设ADC满量程电压为±1V输入信号为s(t)=sinωt,孔径抖动有效值为σ△tj,则由孔径抖动带来的误差电压为:
1.4热噪声
这里将ADC电路中微分非线性误差DNL、孔径抖动△tj外的其它噪声都等效为ADC输入端的热噪声电压Vtn,设其有效值为σtn。
1.5非理想ADC的SNR
一般情况下,量化噪声、微分非线性误差DNL、孔径抖动△tj和热噪声彼此相互独立,综合芍虑这四个因素的影响,可得到ADC的SNR计算公式如下:
式中,N--ADC的量化位数
ε--ADC的实际量化间隔与理想量化间隔误差的有效值,单位LSB
fin--ADC输入信号频率,单位Hz
σ△tj--ADC的孑L径抖动有效值,单位s
σtn--等效到ADC输入端的热噪声的有效值单位LSB
对于高分辨率ADC器件,其固有量化误差、微分非线性误差DNL和器件热噪声均较小。当fin较高时,ADC电路的SNR主要取决于孔径抖动,此时有
2基于AD6644AST一65的高速高分辨率ADC电路设计实例
电路设计目标:有效位数ENOB≥10.50bit、采样率为40MSPS、输入信号频率小于15MHz,输入信号幅度为-ldBFs。该指标能满足数字仪表、高 《ADC信噪比的分析及高速高分辨率ADC电路的实现(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/177768.html
上述误差和噪声的存在,导致ADC的SNR下降。下面先给出理想ADC的SNR计算公式,然后具体分析微分非线性误差DNL、孔径抖动△tj和热噪声对ADC的SNR的影响。
1.1理想ADC的SNR
理想ADC的量化误差g(υ)与满量程内输入信号的电压V的关系如图1所示。量化误差为在[-q/2,q/2]内均匀分布且峰-峰值等于q(q=1LSB,LSB表示理想ADC的最小量化间隔)的锯齿波信号。
设N位ADC满量程电压为±1V,输入信号为s(t)=sinωt,则输入信号电压有效值Vs=1/√2=2N/2√2×q,量化噪声电压有效值于是得ADC输出信噪比为:
SNR=6.02N+1.76(dB)(2)
1.2微分非线性误差DNL
非理想ADC的量化间隔是非等宽的,这将导致ADC器件不能完全正确地把模拟信号转化成相应的二进制码,从而造成SNR的下降;且ADC每个量化的二进制码所对应的量化间隔都不同,为便于分析,用ε(LSB)=εq表示实际量化间隔与理想量化间隔误差的有效值,并近似认为由于DNL的影响,在无失码条件(DNL<1LSB)下,量化误差均匀分布在[-上q+εq/2,q+εq/2]和[-q-εq/2,q-εq/2]内。如图1中实线所示(虚线伪理想ADC量化误差)。这样,在考虑了DNL之后的ADC量化噪声电压Vq_DNL为:
1.3孔径抖动△tj
孔径时间又称孔径延迟时间,是指对ADC发出采样命令(采样时钟边沿)时刻与实际开始采样时刻之间的时间间隔。相邻两次采样的孔径时间的偏差称为孔径抖动,记作△tj。孔径抖动造成了信号的非均匀采样,引起了误差,设ADC满量程电压为±1V输入信号为s(t)=sinωt,孔径抖动有效值为σ△tj,则由孔径抖动带来的误差电压为:
1.4热噪声
这里将ADC电路中微分非线性误差DNL、孔径抖动△tj外的其它噪声都等效为ADC输入端的热噪声电压Vtn,设其有效值为σtn。
1.5非理想ADC的SNR
一般情况下,量化噪声、微分非线性误差DNL、孔径抖动△tj和热噪声彼此相互独立,综合芍虑这四个因素的影响,可得到ADC的SNR计算公式如下:
式中,N--ADC的量化位数
ε--ADC的实际量化间隔与理想量化间隔误差的有效值,单位LSB
fin--ADC输入信号频率,单位Hz
σ△tj--ADC的孑L径抖动有效值,单位s
σtn--等效到ADC输入端的热噪声的有效值单位LSB
对于高分辨率ADC器件,其固有量化误差、微分非线性误差DNL和器件热噪声均较小。当fin较高时,ADC电路的SNR主要取决于孔径抖动,此时有
2基于AD6644AST一65的高速高分辨率ADC电路设计实例
电路设计目标:有效位数ENOB≥10.50bit、采样率为40MSPS、输入信号频率小于15MHz,输入信号幅度为-ldBFs。该指标能满足数字仪表、高 《ADC信噪比的分析及高速高分辨率ADC电路的实现(第2页)》