低功耗模拟前端电路设计
FIN接VDD时的VREF是由内部产生的0.512V。COM、REFP、REFN均为低阻输出,电压分别为VCOM=VDD/2、VREFP=VDD/2+VREF/2、VREFN=VDD/2-VREF/2。分别用0.33μF电容作为REFP、REFN与COM引脚的旁路电容,并用0.1μF电容将REFIN旁路到GND。
在外部基准模式下,在REFIN引脚一般应施加1.024V±10%的电压。该模式下,COM、REFP与REFN均为低阻输出,电压分别为VCOM=VDD/2、VREFP=VDD/2+VREF/4、VREFN=VDD/2-VREF/4。可分别用0.33μF电容作为REFP、REFN与COM引脚的旁路电容,并用0.1μF电容将REFIN旁路到GND。在该模式下,DAC的满量程输出电压和共模电压均与外部基准成正比。例如,若VREFIN增加10%(最大值),则DAC的满量程输出电压也增加10%或达到±440mV,同时共模电压也将增加10%。
3.3输入/输出耦合电路
通常,MAX5865在全差分输入信号下可提供比单端信号更好的SFDR与THD性能,尤其是在高输入频率的情况下。在差分模式下,当输入?IA+、I-A-、QA+、QA-?对称时,偶次谐波会更低,并且每路ADC输入仅需要单端模式信号摆幅的一半。而通过非平衡变压器可为单端信号源至全差分信号的转换提供出色的解决方案,并可获得极佳的ADC性能。当然,在没有非平衡变压器的情况下,也可以使用运放来驱动MAX5865的ADC,此时,MAXIM公司的MAX4353/MAX4454等运放便可提供高速、带宽、低噪声与低失真性能,以保持输入信号的完整性。
3.4线路板布线
MAX5865需要采用高速电路布线设计技术,电路布局可以参考MAX5865评估板数据资料。所有旁路电容应尽可能靠近器件安装,并与器件位于电路板的同侧,同时应该选用表贴器件以减小电感。可用0.1μF陶瓷电容与2.2μF电容并联,以将VDD旁路到GND;也可用0.1μF陶瓷电容与2.2μF电容并联将OVDD旁路到OGND;同时分别用0.33μF陶瓷电容将REFP、REFN与COM旁路到GND;而用0.1μF电容将REFIN旁路到GND。
通过具有独立地平面与电源平面层的多层板可以获得最佳的信号完整性。模拟地(GND)与数字输出驱动地(OGND)应采用独立的地平面,并分别与器件封装上的物理位置相匹配,MAX5865裸露的背面焊盘接到GND平面,两个地平面应单点相连,以使噪声较大的数字地电流不会影响模拟地平面。两个地平面之间空隙上的一点通常是单点共地的最佳位置,可以用一个低阻值的表贴电阻(1Ω至5Ω)、磁珠或直接短路来完成该连接。如果该地平面与所有噪声较大的数字系统地平面?如后续输出缓冲器或DSP地平面?充分隔离,也可以使所有接地引脚共享同一个地平面。此外,高速数字信号布线应远离敏感的模拟信号布线,以确保模拟输入与相应的转换器隔离,减小通道间的串扰。同时应确保所有信号引线尽可能短,并应避免90°转角。
《低功耗模拟前端电路设计(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/177903.html
在外部基准模式下,在REFIN引脚一般应施加1.024V±10%的电压。该模式下,COM、REFP与REFN均为低阻输出,电压分别为VCOM=VDD/2、VREFP=VDD/2+VREF/4、VREFN=VDD/2-VREF/4。可分别用0.33μF电容作为REFP、REFN与COM引脚的旁路电容,并用0.1μF电容将REFIN旁路到GND。在该模式下,DAC的满量程输出电压和共模电压均与外部基准成正比。例如,若VREFIN增加10%(最大值),则DAC的满量程输出电压也增加10%或达到±440mV,同时共模电压也将增加10%。
3.3输入/输出耦合电路
通常,MAX5865在全差分输入信号下可提供比单端信号更好的SFDR与THD性能,尤其是在高输入频率的情况下。在差分模式下,当输入?IA+、I-A-、QA+、QA-?对称时,偶次谐波会更低,并且每路ADC输入仅需要单端模式信号摆幅的一半。而通过非平衡变压器可为单端信号源至全差分信号的转换提供出色的解决方案,并可获得极佳的ADC性能。当然,在没有非平衡变压器的情况下,也可以使用运放来驱动MAX5865的ADC,此时,MAXIM公司的MAX4353/MAX4454等运放便可提供高速、带宽、低噪声与低失真性能,以保持输入信号的完整性。
3.4线路板布线
MAX5865需要采用高速电路布线设计技术,电路布局可以参考MAX5865评估板数据资料。所有旁路电容应尽可能靠近器件安装,并与器件位于电路板的同侧,同时应该选用表贴器件以减小电感。可用0.1μF陶瓷电容与2.2μF电容并联,以将VDD旁路到GND;也可用0.1μF陶瓷电容与2.2μF电容并联将OVDD旁路到OGND;同时分别用0.33μF陶瓷电容将REFP、REFN与COM旁路到GND;而用0.1μF电容将REFIN旁路到GND。
通过具有独立地平面与电源平面层的多层板可以获得最佳的信号完整性。模拟地(GND)与数字输出驱动地(OGND)应采用独立的地平面,并分别与器件封装上的物理位置相匹配,MAX5865裸露的背面焊盘接到GND平面,两个地平面应单点相连,以使噪声较大的数字地电流不会影响模拟地平面。两个地平面之间空隙上的一点通常是单点共地的最佳位置,可以用一个低阻值的表贴电阻(1Ω至5Ω)、磁珠或直接短路来完成该连接。如果该地平面与所有噪声较大的数字系统地平面?如后续输出缓冲器或DSP地平面?充分隔离,也可以使所有接地引脚共享同一个地平面。此外,高速数字信号布线应远离敏感的模拟信号布线,以确保模拟输入与相应的转换器隔离,减小通道间的串扰。同时应确保所有信号引线尽可能短,并应避免90°转角。
《低功耗模拟前端电路设计(第3页)》