等腰三角形的性质
知识结构
重点与难点分析:
本节内容的重点是等腰三角形的性质及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。等腰三角形的性质为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
数学教学的核心是学生的“再创造”.根据这一指导思想,本节课教学可通过精心设置的一个个问题链,激发学生的求知欲,最终在老师的指导下发现问题、解决问题.为了充分调动学生的积极性,使学生变被动学习为主动学习,本课教学拟用启发式问题教学法.具体说明如下:
(1)发现问题
本节课开始,先投影显示图形及问题,让学生观察并发现结论。提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求.
(2)解决问题
对所得到的结论通过教师启发,让学生完成证明.指导学生归纳总结,从而顺其自然得到本节课的一个定理及其两个推论. 多让学生亲自实践,参与探索发现,领略知识形成过程,这是课堂教学的基本思想和教学理念.
(3)加深理解
学生学习的过程是对知识的消化和理解的过程,通过例题的解决,提高和完善对定理及其推论理解。这一过程采用讲练结合、适时点拨的教学方法,把学生的注意力紧紧吸引在解决问题身上,让学生的思维活动在老师的引导下层层展开,让中国学习联盟胆参与课堂教学,使他们“听”有所“思”、“练”有所“获”,使传授知识与培养能力融为一体。一.教学目标:
1.掌握等腰三角形的性质定理的证明及这个定理的两个推论;
2.会运用等腰三角形的性质证明线段相等;
3.使学生掌握一般文字题的证明;
4.通过文字题的证明,提高学生几何三种语言的互译能力;
5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
6.渗透对称的数学思想,培养学生数学应用的观点;
二.教学重点:等腰三角形的性质及其推论
三.教学难点:文字题的证明
四.教学用具:直尺,微机
五.教学方法:问题探究法
六.教学过程(fanwen.oyaya.net):
1、 性质定理的发现与证明
(1)投影显示:
一般学生都能发现等腰三角形的两个底角相等(若有其它发现也要给予肯定),
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
师生讨论后,确定用全等三角形证明,学生亲自动手作出证明.证明略.
教师指出:等腰三角形的性质定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是今后证明两角相等常用的依据,其功效不亚于利用全等三角形证明两角相等.
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.
启发学生自己归纳得出:顶角平分线、底边上的中线、底边上的高互相重合.
学生口述证明过程.
教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
一般学生都能发现等边三角形的三个内角都为 .然后启发学生与等腰三角形的“三线合一”作类比,自己得出等边三角形的“三线合一”.
4、定理及其推论的应用
解:(1) (2)另外两内角分别为: (3)
小结:渗透分类思想,培养思维的严密性.
例2、已知:如图,点D、E在△ABC的边BC上,AB=AC,AD=AE
求证:BD=CE
证明:作AF⊥BC,,垂足为F,则AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(辅助线作法)
∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)
∴BD=CE
强调说明:等腰三角形中的“三线合一”常常作为解决等腰三角形问题的辅助线,添加辅助线时,有时作顶角的平分线,有时作底边中线,有时作底边的高,有时作哪条线都可以,有时却不能,还要根据实际情况来定.
例3、已知:如图,D是等边△ABC内一点,DB=DA,BP=AB, DBP= DBC
求证: P=
证明:连结OC
在△BPD和△BCD中
在△ADC和△BCD中
因此, P=
例4 求证:等腰三角形两腰上中线的交点到底边两端点的距离相等
已知:如图,AB=AC,BD、CE分别为AC边、AB边的中线,它们相交于F点
求证:BF=CF
证明:∵BD、CE是△ABC的两条中线,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴ 1= 2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
设想:例1到例4,由易到难地安排学生对新授内容的练习和巩固.在以上教学中,特别注意“一般解题方法”的运用.
在四个例题的教学中,充分发挥学生与学生之间的互补性,从而提高认识,完善认知结构,使课堂成为学生发挥想象力和创造性的“学堂”
5、反馈练习:
出示图形及题目:
将实际问题数学化,培养学生应用能力。
6、课堂小结:
教师引导学生小结
(1)、等腰三角形的性质
(2)、等边三角形的性质
(3)、文字证明题的书写步骤
7、布置作业:
a、 书面作业P96#1、2
b、 上交作业P96#4、7、8
c、 思考题:
已知:如图:在△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.
求证:EF⊥BC
证明 : 作BC边上的高AM,M为垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC为△AEF的外角
∴∠BAC =∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七.板书设计:
《等腰三角形的性质》