保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教案大全 >> 数学教案 >> 高二数学教案 >> 正文

第一章 集合与简易逻辑



第一章  集合与简易逻辑
第一教时
教材:集合的概念
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
 一、引言:(实例)用到过的“正数的集合”、“负数的集合”
        如:2x-1>3  x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集  N*或 N+
整数集  Z
有理数集 Q
实数集 R
集合的三要素: 1。元素的确定性;  2。元素的互异性;  3。元素的无序性
(例子 略)
三、关于“属于”的概念
    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 aÎA ,相反,a不属于集A 记作 aÏA (或aÎA)
例:  见P4—5中例
四、练习 P5 略
五、集合的表示方法:列举法与描述法
列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
描述法:用确定的条件表示某些对象是否属于这个集合的方法。
1 语言描述法:例{不2 是直角三角形的三角形}再见P6例
3 数学式子描述法:例  不4 等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}或{x:x-3>2}   再见P6例
六、集合的分类
    1.有限集   含有有限个元素的集合
2.无限集    含有无限个元素的集合        例题略
3.空集      不含任何元素的集合   F
七、用图形表示集合      P6略
八、练习 P6
小结:概念、符号、分类、表示法
九、作业 P7习题1.1



《第一章 集合与简易逻辑》
本文链接地址:http://www.oyaya.net/fanwen/view/185362.html

  • 上一篇范文: 集合与简易逻辑
  • 下一篇范文: 函数的单调性

  • ★温馨提示:你可以返回到 高二数学教案 也可以利用本站页顶的站内搜索功能查找你想要的文章。