保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教案大全 >> 数学教案 >> 五年级数学教案 >> 正文

应用题(四)


 

教学目标

(一)进一步掌握应用题的结构,学会解答有关计划与实际比较的应用题。

(二)提高学生分析问题和解决问题的能力。

教学重点和难点

熟练分析应用题的数量关系。

教学过程设计

(一)复习准备

1口答:

(1)小明每分走50m,他从家到学校用了10分。小明家到学校相距多少米?(2)修路队修一条路,计划用40天,实际比计划提前了5天,实际用多少天?(3)一种西服,原来每套售价240元,现在降低了60元,现在每套售价多少元?(4)小华用5分跑了1千克,平均每分跑多少米?

2根据问题写出相应的数量关系式。

(1)实际平均每天修多少米?

要修的米数÷实际修的天数=实际平均每天修的米数。

(2)实际修了几天?

要修的米数÷实际平均每天修的米数=实际修的天数。

(3)实际提前了几天?

计划用的天数-实际用的天数=提前的天数。

(二)学习新课

1启发谈话:

在实际生活和工作中,人们在接受一项任务时,一般都要制定一个计划。但实际工作时,并不一定完全按计划办事,俗话说“计划跟不上变化”。有时情况发生了变化,实际工作就会与计划有很大差别。这就要需要我们认真分析数量关系,弄清计划与实际的区别。今天我们来研究“有关计划与实际比较的应用题”。(板书课题)

2学习例4 学校食堂运来1吨煤,计划烧40天。由于改进炉灶,每天节省5千克,这批煤可以烧多少天?

(1)审题,弄清题意。

读题,找出条件和问题,填下表。

(2)分析数量关系。

①实际与计划有什么联系?

第一:实际与计划烧煤的总量都是1吨。

第二:实际每天烧的比计划节省5千克。

②用综合法思路分析:

③用分析法思路分析:

(3)学生列式解答。

统一单位:

1吨=1000千克

分步算式:

综合算式:

(4)检验,答题:

看实际每天是否节省5千克。

1000÷40-1000÷20=5(千克)

答:这批煤可以烧50天。

2将例4改编成:

学校食堂运来1吨煤,计划烧40天。改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?

(1)学生按解答应用题的四个步骤独立解答。

(2)学生互讲解题思路。

(3)订正:

(4)检验:

①看计划是不是烧40天。(1000÷20-10=40(天))

②看煤的总量是否是1吨。(20×(40+10)=1000(千克)=1吨)

3比较例4与改编后的题目有什么联系与区别?

讨论后得出:

联系:这两道题说的事情相同。

区别:它们的条件和问题有所不同;解答方法不同,例4用三步计算,改编题用两步计算。

为什么例4用三步计算,而改编题用两步计算呢?(因为例4有两个间接条件:①实际每天烧多少千克?②计划每天烧多少千克?改编题有一个间接条件:实际烧多少天?)说明:三步计算的应用题也可以通过改编成为两步计算的应用题。

(三)巩固反馈

1P54“做一做”。

(1)学生独立解答。

(2)同桌互讲解题思路。

(3)订正。

①120÷(120÷20+2)

=120÷(6+2)

=120÷8

=15(天)

②120÷(20-5)

=120÷15

=8(千克)

(4)改变“做一做”2的问题,使之变为四步计算的应用题,你能解答吗?红星小学计划20天收集树种120千克。实际比原计划提前5天完成任务。实际每天比原计划多收集树种多少千克?

2P55:4。

(1)学生独立解答后订正。

15-200×15÷250=3(天)

(2)改变条件,使之成为两步计算的应用题,并解答。

一个生产小组要加工3000个汽车配件。原计划用15天完成任务。实际每天加工了250个。这样比原计划提前几天完成任务?

15-3000÷250=3(天)

(3)改变问题,使之成为两步计算的应用题,并解答。

一个生产小组要加工一批汽车配件。原计划每天加工200个,15天完成任务。实际每天加工了250个。实际几天完成任务?

200×15÷250=12(天)

3P55:5。

(1)审题,分析。

(2)判断下列算式是否正确,为什么?

①35×15÷1(    );

②35×15÷(15+1)(    );

③35×15÷(15-1)(    )。

4课后作业:P55:1,2,3。

课堂教学设计说明

有关计划与实际比较的问题在实际生产和生活中应用比较广泛,但这类问题离学生的生活较远,学生理解起来有一定的困难。为此,在课前安排了启发谈话,便于学生理解计划与实际的关系。

例题的教学,通过填表,理清计划与实际的条件和问题,并引导学生找出计划与实际的联系,然后用数量关系表示出分析的过程,使解题思路更加清晰。

通过对例题及练习题的改编,学生找出它们之间的联系和区别,明确不仅两步应用题可以通过改变条件或问题成为三步应用题,而且三步应用题通过改变条件和问题也可以成为两步应用题,加深了学生对两步应用题与三步应用题的关系的理解。同时在练习中,加强了解题思路的训练,有利于提高学生分析问题和解决问题的能力。

板书设计(略)



《应用题(四)》
本文链接地址:http://www.oyaya.net/fanwen/view/186173.html

  • 上一篇范文: 数据的收集和整理例2
  • 下一篇范文: 循环小数

  • ★温馨提示:你可以返回到 五年级数学教案 也可以利用本站页顶的站内搜索功能查找你想要的文章。