平行线的特征
[教学目标]:
1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。
[教材分析]:
教材设置了一个通过测量探索平行线特征的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线的性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。
[教学重点]
平行线的特征的探索
[教学难点]
运用平行线的特征进行有条理的分析、表达
[设计理念]
为学生提供充足的探索与交流的时间和空间,重视学生在实际操作以及在操作过程中的思考,使学生的空间观念、推理能力得到培养。
[教学过程]
一、巩固旧知,问题引入。
巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论
在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题。
二、实验验证,探索特征。
1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)
2、学生实验(发印好平行线的纸单)
(1)已知,a//b,任意画一条直线c与平行线a、b相交。
(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系
3、实验结论:
两条平行线被第三条直线所截,同位角相等。
简记为“两直线平行,同位角相等”
识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?
4、问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢
(小组讨论,给予充足的时间交流,可引导学生
与同位角进行比较,从而得出结论,关注学生在
此能否积极地、有条理地思考)
结论: “两直线平行,内错角相等”
“两直线平行,同旁内角互补”
(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)
5、归纳平行线的三个性质及三个判定
三个性质:
三个判定:
三、例题学习,实践运用。
(一)找找看:
如图所示,AB∥CD,AC∥BD,分别找出与∠1相等或互补的角。
(学生可通过讨论交流找到所有的答案,
并标注在图中)
(二)做一做:
如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,
(1)∠1、∠3的大小有什么关系?∠2与∠4呢?
(2)反射光线BC与EF也平行吗?
先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。
(1) AB∥CD→∠1=∠3→∠2=∠4
(2) ∠2=∠4→BC∥EF
(三)考考你:
如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°。已知梯形的两底AD//BC,请你求出另外两个角的度数。
(学生尝试用自己的方式书写说理过程)
已知:如图,∠ADE=60°,∠B=60°,∠C=80°。
问∠ AED等于多少度?为什么
∵ ∠ADE=∠B=60° (已知)
∴ DE//BC( )
∴ ∠AED=∠C=80° ( )
(通过填空题,检验学生对平行线的判定与性质的区分)
四、课堂小结:
1、说说平行线的三个性质是什么?
2、平行线的性质与平行线的判定的区别:
3、证平行,用判定;知平行,用性质。
五、课后作业:
《平行线的特征》