保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教案大全 >> 数学教案 >> 初三数学教案 >> 正文

平方差公式



4.4.1    平方差公式    课时教案
湖北口中学    张衍生

教学内容:  P108—110  平方差公式    例1    例2    例3
教学目的: 1、使学生会推导平方差公式,并掌握公式特征。
           2、使学生能正确而熟练地运用平方差公式进行计算。
教学重点:使学生会推导平方差公式,掌握公式特征,并能正确而熟
          练地运用平方差公式进行计算。
教学难点:掌握平方差公式的特征,并能正确而熟练地运用它进行计
          算。
教学过程:
一、复习引入
1、复述多项式与多项式的乘法法则
2、计算   (演板)
(1)(a+b)(a-b)         (2)(m+n)(m-n)
(3)(x+y)(x-y)         (4)(2a+3b)(2a-3b)
3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)
二、新课
1、平方差公式
由上面的运算,再让学生探究
现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗?  引导学生把2m看成a,3n看成b写出结果.
(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2
(a + b)(a - b)= a2  -  b2
向学生说明:我们把
         (a+b)(a-b)=a2- b2             (重点强调公式特征)
叫做平方差公式,也就是:
两个数的和与这两个数的差等于这两个数的平方差.
3、练习:判断下列式子哪些能用平方差公计算。(小黑板)
(1)(-x-2y)(-x+2y)          (2)(-2a+3b)(2a-3b)
 (3)(a+3b)(3a-b)             (4)(-m-3n)(m-3n)
2、教学例1
(1)(2x+1)(2x-1);  (2)  (x+2y)(x-2y)
(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。
(3)具体解题过程:板书,同教材,略
3、教学例2    例3
先引导学生分析后指名学生演板,略
4、练习:课本P110   1(指名演板)  2、(口答)3、演板
三、巩固练习:(小黑板)
1、填空:(1)(x+3)(x-3)=__________  (2)(-1-2x)(2x-1)=______
(3)(-1-2x)(-2x+1)=_____________    (4)(m+n)(          )=n2-m2
(5)(          )(-x-1)=1-x2          (6)(          )(a-1)=1-a2
2、选择题
(1)  下列可以用平方差公式计算的是(     )
A、(2a-3b)(-2a+3b)                B、(- 4b-3a)(-3a+4b)
C、(a-b)(b-a)                     D、(2x-y) (2y+x)
(2)下列式子中,计算结果是4x2-9y2的是(    )
A、(2x-3y)2                    B、(2x+3y)(2x-3y)
C、(-2x+3y)2                   D、(3y+2x)(3y-2x)
(3)计算(b+2a)(2a-b)的结果是(    )
A、4a2- b2       B、b2- 4a2         C、2a2- b2        D、b2- 2a2
四、小结:引导学生说一说平方差公式
五、作业:P114   1
思考题:运用平方差公式计算:
(1)(a+b)2—(a-b)2       (2)(x+y+1)(x+y-1)
(3)(a-b+1)(a+b-1)
课后简记:

附:板书设计

平方差公式             例1            例2           例3
(a+b)(a-b)=a2-b2




《平方差公式》
本文链接地址:http://www.oyaya.net/fanwen/view/194189.html

  • 上一篇范文: §2.3 平行线特征
  • 下一篇范文: 数据的收集与整理

  • ★温馨提示:你可以返回到 初三数学教案 也可以利用本站页顶的站内搜索功能查找你想要的文章。