比和比例
教学内容
教科书第95~96页的内容和“做一做”的题目,练习十九的第1、3、5、6、8题.
教学目的
1.使学生掌握比和比例的意义,比例的基本性质,会解比例.
2.使学生能够应用比例的知识,求出平面图的比例尺以及根据比例尺求图上距离或实际距离.
教具准备
一幅比例尺是的教学大楼平面图.
教具准备
一、比和比例的意义和性质
1.比的意义和性质.
教师:在学习比的意义时,我们已经知道有时两个数量之间的关系,可以用两个数的比来表示.那么,比的意义是什么呢?举例说明比的各部分名称.(两个数相除又叫做两个数的比.例如长方形的长和宽的比是3比2,记作3∶2,其中3是前项,2是后项,“∶”是比号,并且后项不能等于零.)
教师:两个数的比能不能写成分数形式?(3∶2可以写成,仍读作3比2.)
教师:两个数的比能不能求出它们的值?(比的前项除以后项所得的商,叫做比值.例如:3∶2==1)
教师:根据分数和除法的关系,两个数的比也可以写成分数形式.比、分数和除法有什么联系和区别?
教师根据学生的回答,整理成下表:
比
除法
分数
联系
3∶2=1.5
┆┆┆ ┆
前比后 比
项号项 值
3÷2=1.5
┆┆┆ ┆
被除除 商
除号数
数
分 子…3
分数线…─=1.5
分 母…2 ┆
分
数
值
区别
表示两个数的关系
是一种运算
是一种数
教师:想一想比的基本性质是什么?(比的前项和后项同时乘上或者除以相同的数(O除外),比值不变.)
教师:比的基本性质有什么用处?(可以把比化成最简单的整数比.)
2.比例的意义和性质.
教师:什么是比例?并举例说明比例的各部分名称.(表示两个比相等的式子叫做比例.例如:5∶6=20∶24,其中5与24叫外项,6与20叫内项.)
教师:什么是比例的基本性质?(在比例里,两个外项的积等于两个内项的积.例如:5∶6=20∶24,5×24=6×20.)
教师:比例的基本性质有什么用处?(利用比例的基本性质,可以解比例.)
例1解比例(1)12∶x=8∶2
让学生独立完成.集体订正时,让学生说明解比例的根据是什么.
3.做教科书第95页“做一做”的题目.
第1题,让学生独立完成.集体订正时,要说明能组成比例的理由.
第2题,先让学生说明1.4是甲数除以乙数的商,还可以表示什么?(表示甲数和乙数的比的比值.)集体订正时,让学生说出比值是1.4的甲数和乙数的比有多少.例如:14∶10,7∶5,28∶20,35∶25等等.教师问:为什么有多种答案?(因为1.4可以看成甲数和乙数的比的比值,根据比的基本性质,比的前项和后项乘上或者除以相同的数(O除外),比值不变,所以会有多种答案.)
第3题,让学生独立完成后集体订正.
二、求比值和化简比
例2求比值:
教师:在做题过程中,要思考解题时用的是什么方法?得到的结果是什么?两者有什么区别?
学生做完后,教师边提问,边板书,整理成下表:
一般方法
结 果
求比值
化简比
教师:如果比的前项和后项都是分数,要化简比时也可以用下面的方法解答.例如:
注意:化简比的结果要是一个比,而且是最简单的整数比.
教师让学生独立完成教科书第96页“做一做”的题目.做完后集体订正.
三、比例尺
教师出示一幅教学大楼的平面图,让学生观察后提问:
(1)这幅平面图的比例尺是多少?(比例尺是.)
(2)这个比例尺表示的含义是什么?举例说明.(表示实际距离是图上距离的100倍.如果实际距离是1米,图上距离就是1厘米.)
(3)比例尺除了写成1100以外,还可以怎样表示?(可以写成1∶100,还可以在线段上标出1厘米的长度所代表的实际距离:
教师让学生做教科书第97页上面“做一做”的题目.做完后集体订正.
四、作业
练习十九的第1、3、5、6、8题.
《比和比例》