小数点的移动引起小数的变化
教学目标
(一)使学生理解和掌握小数点位置移动引起小数大小的变化规律
(二)通过总结规律的过程,培养学生观察比较,概括的能力.
教学重点和难点
小数点位置移动引起小数大小的变化规律,归纳“规律”的过程,既是教学的重点,又是学生学习的难点.
教学过程
(一)复习准备,导入问题情境
教师板书:35.67 3.567 356.7 3567比较大小.
订正后提问,这四个数有什么相同特点?(数字及排列顺序一样.)有什么不同?(小数点位置不同,大小不同.)
教师小结:可见小数点的位置直接影响到小数的大小.那么,小数点的位置移动会引起小数大小怎样的变化呢?今天我们一起研究.
板书课题:小数点位置移动的规律.
(二)学习新课
1.例1 把0.004米的小数点向右移动一位、两位、三位……小数的大小有什么变化?
(1)0.004米等于多少毫米?(板书:0.004米=4毫米)
(2)师移动0.004米的小数点.
向右移动一位,变为多少毫米?大小发生了什么变化?(板书:0.04米=40毫米,原数扩大10倍)
向右移动两位,原数变为多少?是多少毫米?大小有什么变化?(板书:0.4米=400毫米,原数扩大100倍)
向右移动三位,原数又变成多少?是多少毫米?大小又发生了什么变化?(板书:4米=4000毫米,原数扩大1000倍)
小数点可不可以向右移动四位、五位甚至更多位?(可以)
教师:所以我们要在移动位数和扩大倍数的后边点上省略号.
板书:……
(3)从这一例子看,小数点向右移动会引起原数怎样的变化?你能总结出规律来吗?
在同学充分发表意见的基础上,引导学生总结出:
小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
2.刚才是由上往下观察(画↓),如果我们由下往上观察(板书↑),小数点相当于往哪边移动?(向左移动),小数点向左移动了几位?原来的数会有怎样的变化?
小组讨论.
全班交流讨论结果,引导学生得出:
小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……(板书)
3.引导学生完整地概括小数点移动位置引起小数大小的变化规律.
反馈:初步应用规律具体说明小数大小是怎样随着小数点向右(左)移动而变化的.
完成105页“做一做”及106页上面的“做一做”.
下面各数同0.372比较,各扩大多少倍?
3.72(扩大10倍,小数点向右移动一位)
372(扩大1000倍,小数点向右移动三位)
37.2(扩大100倍,小数点向右移动两位)
下面的数同506比较,各缩小多少倍?
5.06(缩小100倍) 0.506(缩小1000倍) 50.6(缩小10倍)0.0506(缩小10000倍)
教师强调:掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是1000倍……
4.引导初步解决问题.
应用上面的变化规律,把一个数扩大或缩小10倍、100倍、1000倍……只要移动小数点位置就可以了.
(1)试把0.654扩大10倍、100倍、1000倍各是多少?
启发学生得出:把0.654扩大10倍,小数点向右移动一位,得6.54;扩大100倍,小数点向右移动两位,得65.4;扩大1000倍,小数点向右移动三位,得654.
(2)同理把43.9缩小10倍,10O倍各得多少?
43.9缩小10倍,小数点向左移动一位,得4.39;缩小100倍,小数点向左移动两位,得0.439.
5.小结:
今天学习了什么知识?
小数点移动变化的规律是什么?
(三)巩固反馈
1.填空.(投影)
(1)把0.3的小数点向右移动一位,原来的数就( )( )倍,得( ).
(2)把8.72的小数点向右移动两位,得( ),这个数就比原来( )倍.
(3)把142.5缩小100倍,小数点向( )移动( )位,得( ).
2.下面各数去掉小数点,各扩大多少倍?
0.8 1.25 4.036 8.73
3.下面各数,如果把小数点都移到最高位数字的左边,小数的大小有什么变化?
27.3 5.94 0.248 125.6
(四)作业
练习二十二第1~3题.
课堂教学设计说明
小数和整数是一样的,也是按照十进制计数的,就是数字所在的位置不同,表示数值的大小也不一样.小数的数位是由小数点决定的,因此小数点移动,必然引起小数大小发生变化.这一变化规律不仅是小数乘除法计算的依据,也是复名数与小数相互改写的基础,所以要让学生深刻理解并会运用.
本课首先通过复习几个小数大小的比较,看出小数点的位置直接影响到小数的大小,到底小数点移动会引起原数怎样的变化,从而引出新课题,调动学生学习兴趣.
新课安排了三个层次
第一层,教学例1,设计一系列问题,引导学生观察、比较,由于思维方向明确,在老师的引导下,学生自己归纳出小数点向右移动引起小数大小的变化规律.
第二层,同一个例题,逆向思考,观察小数点移动的方向,原数的变化规律,是通过学生自学,小组讨论而后归纳出小数点左移的变化规律.
在此基础上学生完整地归纳出移动规律.
第三层,引导学生初步运用规律解决问题.(不包括补0的问题)
本节课是以归纳总结规律为重点,围绕巩固概念的重点安排了不同形式的练习,为下一节应用规律打好基础.
《小数点的移动引起小数的变化》