用字母表示数
《用字母表示数》教学设计
教学内容:教材第86~87页、练习二十三第1~5题
教学目标:
1、学会用字母表示加法、乘法的运算定律和多边形的周长、面积计算公式,进一步理解和掌握加法、乘法的运算定律和多边形的周长、面积计算公式。
2、学会运用字母公式求多边形的周长、面积。
3、理解一个数的平方的意义、读法和写法。学会简写或略写含有字母的乘法式子中的乘号,并会正确地对含有字母的式子进行化简。
4、激发学习的兴趣,培养归纳、概括能力,以及良好的学习习惯。
教学重点:学会用字母表示运算定律和计算公式,并会运用字母公式求多边形的面积和周长。
教学难点:理解一个数的平方的意义,掌握运用字母公式求多边形的面积或周长的书写格式。
教学用具:计算机、多媒体课件、实物投影仪、卡片算式、正方形
教学过程:
一、激发兴趣,引入新课
师:同学们,请看屏幕(电脑出示很多字母),你们刚才看到了什么?(字母)在我们的日常生活中也可以看到很多字母,同学们在课前收集了很多有关字母的资料,哪个同学愿意说说你知道字母可以表示什么或者平时在哪里会见到字母呢?(随着学生的汇报,电脑出示扑克牌、键盘、音调、住宅代号等)
师:不仅在生活中,我们要用到字母,在数学学习中,我们也经常用字母来表示数,这节课我们一起来学习用“字母表示数”。(板书课题)
二、 探究新知
(一)学习用字母表示运算定律
1、从同学们刚才收集的资料中,有的同学说用字母可以表示运算定律,老师想请这位同学说说,加法交换律是怎样的?乘法结合律呢?(学生回答,师在电脑出示)(举两个例子)
2、引导学生小结:上面的两个运算定律分别用文字叙述和用字母表示,你更喜欢哪一种表示方法?为什么? [引导学生说出:用字母表示运算定律比用文字叙述更简明、易记,也便于应用。(板书:简明易记、便于应用)]
3、所以,我们要认真学好用字母表示数的知识。
(二)学习用字母表示计算公式
1、师:我们除了学过用字母表示运算定律,还学过用字母表示一些图形的面积和周长计算公式。电脑出示平行四边形、三角形、梯形、长方形和正方形图,你可以用字母把这几种图形的面积或周长计算公式表示出来吗?
2、学生汇报,电脑出示以上几个计算公式。
3、正方形的面积和周长计算公式用字母还可以怎样表示呢?请同学们带着这个问题自学P86~P87。(四人小组互相合作)
4、学生汇报,随着学生汇报板书=a2 ,a2表示两个a相乘 即a×a。
小结:相同的字母相乘,可以写成这个字母的平方,写的时候先把这个相同的字母写一次,然后在右上角写上2。如果正方形的边长是3厘米,那它的面积应该怎样计算?(3×3)3×3还可以写成(32),32等于(9)。32等于9,那42、52呢?同位互相出题考对方。
5、书上还告诉你什么?学生汇报。(在含有字母的式子里,数字和字母中间的乘号可以记作“·”,也可以省略不写。在省略乘号的时候,应当把数字写在字母前面。所以,正方形周长的计算公式可以写成C=4a)
小结:只有字母和字母,数字和字母之间的乘号可以省略。
6、那刚才你们写出的计算公式中,还有哪些是可以省略乘号的呢?
C=(a+b)×2
卡片:x×3可以写成(3 x),x×x呢?5×a?a×x?
7、关于乘号的简写方式你们还有哪些不明白的地方?(学生质疑由学生回答)(如果学生没有提出,由老师提问)
在含有字母的式子里,加号、减号和除号能不能省略?为什么?你能举一个例子来说明吗?
如:x+a不能写成“xa”;s÷12不能写成“12 s”。
(三)学习运用字母公式计算多边形的面积或周长
师:我们学会用字母表示计算公式后,就可以运用于图形的面积或周长计算中。
1、出示例1。
2、请同学们打开P87,自学例1并讨论把数值代入公式进行计算的步骤是怎样的?(四人小组讨论))
学生汇报:
(1) 计算时要先写出计算公式;
(2) 在列式前要多写一个等号,而且等号要对齐;
(3) 计算出的结果不能写单位名称;
(4) 最后要在答句中注明单位名称。
3、在计算过程中,还要注意要按顺序依次把数字代入公式中,数字与数字之间的乘号不能省略不写。
4、练一练:下面就请你们用例题的方法解答P87 下面的做一做。
(四)小结:刚才,我们学习了用字母表示运算定律和计算公式,它比用文字叙述更简明、易记、便于应用。我们还可以利用字母公式计算多边形的面积或周长。
三、巩固新知
1、P88 1
2、把结果相同的式子用线段连起来。
62 a+a
6×2 6×6
a×2 6+6
a2 a×a
3、P88 3
4、下面的说法对吗?为什么?
(1) 92 和 9×2表示的意义是一样的。 ( )
(2) a×8简写作8a。 ( )
(3) 6×7的乘号可以省略不写。 ( )
(4) C+5可以简写作5C。 ( )
5、综合练习。
先出示第一个图形,问:以下这个图形的阴影部分面积怎么表示?
再给学生一个空白的第一个图形,让学生随意画出阴影部分,然后说说怎样计算。(如学生不明白,就出示第二个图形举例说明)
S = a2 + b2 S =(a+b)b÷2
四、课堂总结
这节课你们学到了哪些知识?通过这节课的学习,你知道了什么?学会了什么?
板书:
用字母表示数
例1:
(题目及解答过程)
(ab)c=a(bc) a2表示两个a相乘 即a×a
C=4a
《用字母表示数》