保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教案大全 >> 数学教案 >> 六年级数学教案 >> 正文

解方程



年级(小五) 供稿(奥赛组) 列方程解应用题
知识网络
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
        一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
        设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如“相等”、“是”、“比……多……”、“比……少……”、“……是……的几倍”、“……的总和是……”、“……与……的差是……”等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
 重点·难点
        列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
 学法指导
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
经典例题
例1   某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
 思路剖析
    如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦        如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数÷工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解  答
 设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2   牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
 思路剖析
 这是以前接触过的“牛吃草问题”,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:“每天牧草都匀速生长”,草生长的速度是固定的,这就可以发掘出等量关系,如从“供10头牛吃20天”表达出生长速度,再从“供15头牛吃10天”表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
 解  答
 设供25头牛可吃x天。
由:草的总量=每头牛每天吃的草×头数×天数
            =原有的草+新生长的草
原有的草=每头牛每天吃的草×头数×天数-新生长的草

新生长的草=草的生长速度×天数

考虑已知条件,有

原有的草=每头牛每天吃的草×10×20-草的生长速度×20

原有的草=每头牛每天吃的草×15×10-草的生长速度×10

所以:原有的草=每头牛每天吃的草×200-草的生长速度×20

原有的草=每头牛每天吃的草×150-草的生长速度×10

即:每头牛每天吃的草×200-草的生长速度×20

=每头牛每天吃的草×150-草的生长速度×10

每头牛每天吃的草×200草的生长速度×20+每头牛每天吃的草×150-草的生长速度×10

每头牛每天吃的草×200-每头牛每天吃的草×150

=草的生长速度×20-草的生长速度×10

每头牛每天吃的草×(200-150)=草的生长速度×(20-10)

所以:每头牛每天吃的草×50=草的生长速度×10

每头牛每天吃的草×5=草的生长速度

因此,设每头牛每天吃的草为1,则草的生长速度为5。

由:原有的草=每头牛每天吃的草×25x-草的生长速度×x

原有的草=每头牛每天吃的草×10×20-草的生长速度×20

有:每头牛每天吃的草×25x-草的生长速度×x

=每头牛每天吃的草×10×20-草的生长速度×20

所以:1×25x-5x=1×10×20-5×20

解这个方程

25x-5x=10×20-5×20

20x=100

x=5(天)

答:可供25头牛吃5天。
例3    某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
 解  答
 设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

解法一:用直接设元法。

80x-40=(30x+40)×2

80x-40=60x+80

20x=120

x=6(座)

解法二:用间接设元法。

设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

(x-40)÷30=(2x+40)÷80

(x-40)×80=(2x+40)×30

80x-3200=60x+1200

20x=4400

x=220(米3)

由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

同理,也可设有红砖x米3。留给同学们练习。

答:计划修建住宅6座。

 

例4   两个数的和是100,差是8,求这两个数。

 思路剖析

 这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

 解  答

 解法一:设较小的数为x,那么较大的数为x+8,根据题意“它们的和是100”,可以得到:

x+8+x=100

解这个方程:2x=100-8

所以   x=46

所以  较大的数是  46+8=54

也可以设较小的数为x,较大的数为100-x,根据“它们的差是8”列方程得:

100-x-x=8

所以   x=46

所以  较大的数为100-46=54

答:这两个数是46与54。

解法二:当然这道题也可以设大数为x,那么较小的数可以用100-x或x-8来表示,根据题意,可得到下面两个方程:

x-8+x=100

x-(100-x)=8

解这两个方程,也可以求得较大的数是54,较小的数是46。

 

例5  如图是一个平行四边形,周长为120米,两个底边上的高分别为12米和18米,它的面积是多少平方米?

 

 思路剖析

 此题如果直接设平行四边形的面积为x平方米,当然要从周长来找等量关系;如果不直接设面积为x平方米,而设其中的一个底为x米(如设12米的高所对应的底是x米),由题意可知,等量关系应从平行四边形面积来考虑。

 解  答

 解法一:设12米的高所对应的底是x米,则平行四边形的面积是12x平方米。

12x=(120÷2-x)×18

12x=(60-x)×18

12x=1080-18x

12x+18x=1080

30x=1080

x=36

12x=12×36=432

解法二:设平行四边形的面积是x平方米。

 

方程左右两边都乘以12和18的最小公倍数36得

3x+2x=2160

5x=2160

x=432

答:它的面积是432平方米。

 

发散思维训练

1.丢番图是古希腊著名的数学家,他的墓志铭与众不同,碑文是:“过路人!这里埋葬着丢番图,他一生的六分之一是幸福的童年;又活了一生的十二分之一,面部长起了胡须;随后是一生的七分之一的单身汉生活;婚后五年,他有了一个儿子;可是,儿子活到在丢番图一生年龄的一半时,不幸夭折;儿子死后,父亲在深深的悲哀中又过了4年也与世长辞……”你能计算出他一生中主要经历的年龄吗?

2.今年姐妹俩年龄的和是55岁,若干年前,当姐姐的年龄只有妹妹现在这么大时,妹妹的年龄恰好是姐姐年龄的一半,问姐姐今年多少岁?

3.两个缸内共有48桶水,甲缸给乙缸加水一倍,然后乙缸又给甲缸加甲缸剩余水的一倍,则两缸的水量相等,求两个水缸原来各有多少桶水?

4.早晨6点多钟有两辆汽车先后离开学校向同一目的地开去,两辆汽车离开学校的距离是第二辆汽车的3倍。到6点39分的时候,第一辆汽车离开学校的距离是第二辆汽车的2倍,求第一辆汽车是6点几分离开学校的?

5.一人乘竹排沿江顺水漂流而下,迎面遇到一艘逆流而上的快艇,他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一艘轮船。”竹排继续顺水漂流了1小时遇到了迎面开来的这艘轮船。那么快艇静水速度是轮船静水速度的多少倍?

 

 

参 考 答 案 

1.解:

 

由此可得:丢番图幸福的童年是14岁以前,21岁长胡须,过12年的单身汉生活,21+12=33,33岁结婚,38岁得子,80岁时丧子,儿子只活了42岁,丢番图活了84岁。

2.解:

若直接设姐姐今年为x岁,则妹妹的年龄不好表示,所以我们设若干年前妹妹年龄为x岁,这样,姐姐在若干年前就为2x岁,妹妹今年年龄为2x岁,姐姐今年年龄是3x岁,于是,根据“今年姐妹俩年龄和为55岁”这一等量关系,可列方程

2x+3x=55

   5x=55

所以x=1

所以,妹妹今年的年龄为11×2=22(岁);姐姐今年的年龄为11×3=33(岁)。

答:姐姐今年33岁。

3.解:

设原来甲缸有x桶水,乙缸有(48-x)桶水。甲缸给乙缸加水一倍,则甲缸有水[x-(48-x)]桶,乙缸有水2(48-x)桶,乙缸又给甲缸加甲缸剩余水的一倍,则甲缸有水2[x-(48-x)]桶,乙缸有水{2(48-x)-[x-(48-x)]}桶,根据题意得:

2[x-(48-x)]=2(48-x)-[x-(48-x)]

2x-2(48-x)=2(48-x)-x+(48-x)

3x=5(48-x)

3x=5×48-5x

8x=5×48

x=30

所以48-x=48-30=18

答:甲缸原有水30桶,乙缸原有水18桶。

4.解:

两辆汽车的速度都是60千米/小时=1千米/分。设在6点32分时第二辆汽车离开学校的距离为x千米,则第一辆汽车离开学校的距离为3x千米,到6点39分时两辆汽车都行了7分钟,行程都是7千米,与学校的距离:第二辆汽车为(x+7)千米,第一辆汽车为(3x+7)千米,根据题意得:

2(x+7)=3x+7

2x+14=3x+7

x=7

所以3x=3×7=21

因此,在6点32分时,第一辆车已行驶了21分钟,32-21=11

答:第一辆汽车是早晨6点11分离开学校的。

5.解:

设快艇静水速度为m,轮船静水速度为n,水流速度为v,显然竹排速度就是水流速度v,由“顺流速度=船速+水速,逆流速度=船速-水速”的数量关系进行解答。

这样,快艇从超过轮船起,遇到竹排(用了0.5小时)止,这段路程(快艇行程)为(m-v)×0.5,而这段路程是竹排行驶1小时、轮船行驶(1+0.5=1.5小时)的路程之和,即v+(n-v)×1.5。因而

(m-v)×0.5=v+(n-v)×1.5

0.5m-0.5v=v+1.5n-1.5v

0.5m-0.5v=1.5n-0.5v

0.5m=1.5n

m÷n=3

答:快艇静水速度是轮船静水速度的3倍。




《解方程》
本文链接地址:http://www.oyaya.net/fanwen/view/207831.html

  • 上一篇范文: 圆的周长
  • 下一篇范文: 三个分数的通分及综合练习

  • ★温馨提示:你可以返回到 六年级数学教案 也可以利用本站页顶的站内搜索功能查找你想要的文章。