教学内容:
教科书15页,例2及“做一做” ,练习四8─10题。
教学目的:
(1)、会画线段图分析分数乘法两步应用题的数量关系。
(2)、掌握分数两步连乘应用题解答方法,并能正确解答。
(3)、进一步培养学生初步的逻辑思维能力。
教学重点:分析分数乘法两步应用题的数量关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教学过程:
(一)、复习引入:
1、先说说各式的意义,再口算出得数。
╳ ╳
2、指出下面含有分数的句子中,把谁看作单位“1”。
(1)乙数是甲数的 。(甲数)
(2)乙数的 相当于甲数。(乙数)
(3)大鸡只数的 等于小鸡的只数。(大鸡)
(4)大鸡的只数相当于小鸡的 。(小鸡)
(二)、探究新知:
1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
(1)审题:
全体默读,再指名读,说出已知条件和问题。
师生边讨论边画出线段图。
先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?
(根据:“小华的钱数是小亮的 ”,把小亮的钱数看作单位“1”,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)
然后画一条线段表示谁储蓄的钱数?画多长?根据什么?
(又根据:“小新的钱数是小华的 ”,把小华的钱数看作单位“1”,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。
小亮 |
18元 |
?元 |
?元 |
小华 |
小新 |
(2)分析数量关系:
引导学生从已知条件分析:根据“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ”,可以把谁看作单位“1”,求出谁的钱数?再根据“小新储蓄的钱是小华的 ”,又可以把谁看作单位“1”,求出谁的钱数?
也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?
(3)确定每一步的算法,列出算式。
怎么求小华的钱数?
根据“小华的钱数是小亮的 ”,把小亮的钱数看作单位“1”,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。
板书:18╳ =15(元)
怎么求小华的钱数?
根据“小新的钱数是小华的 ”,把小华的钱数看作单位“1”,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。
板书:15╳ =10(元)
把上面的分步算式列成综合算式:
板书:18╳ ╳ =10(元)
(4)检验写答:
答:小新储蓄了10元。
2、做一做。
学生独立画出线段图,教师巡视指导。
3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位“1”,第二步把谁看作单位“1”。
(三)、课堂练习:
独立完成练习四的第8、9、10题。
板书设计:
例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
小亮 |
18元 |
?元 |
?元 |
小华 |
小新 |
18╳ =15(元)
15╳ =10(元)
18╳ ╳ =10(元)
答:小新储蓄了10元。
《分数乘法两步应用题》
本文链接地址:http://www.oyaya.net/fanwen/view/208005.html