保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教学论文 >> 数学论文 >> 正文

探究高中数学新课程中的向量及其教学



  
  (2)注重向量的几何意义
  
  利用向量来刻画几何对象是向量代数性质几何意义的重要体现。例如,mn=0的几何意义体现为向量m与向量n两者是垂直的,从而将向量的代数运算有效地与其位置关系相联系,进而将其与直线的关系相联系。再如,mm的几何意义表现为向量m长度的平方,从而将向量长度与其数量积运算进行联系。因此,在高中数学新课程的向量教学中,老师应重点引导学生将向量的几何意义以及向量代数运算展开联系,帮助学生更好地理解向量数量积的几何意义,从而更好地利用向量代数性质对几何对象进行刻画,让学生能够深刻体会几何与代数两者间的联系。
  
  2.在向量教学中,要注重丰富其物理背景
  
  向量有着丰富的物理背景,老师在高中数学的向量教学中要注重突出这些物理背景,使学生更全面地了解向量。物理量如速度、位移以及力等都是向量的原型,它们与日实际生活联系紧密,在教学中老师要充分利用这些现实背景。例如,在对苏教版必修四的《向量的加法运算》进行教学时,老师可通过直观的位移合成背景的方式导入向量加法运算。如,假设某一物体从L位移到M,接着从M位移到N,那么从L到N的位移就为这两次位移的结果,将这个确定的总位移视作前两位移之和是自然的,以此导入向量的加法及其三角形、平行四边形法则。再如,可运用速度或位移的倍数为背景引入向量与数的乘积运算;运用力做功作为背景引入向量的数量积运算。老师可先为学生创设情境问题如:在物理学中,某一物体在其所受的F力下,在F力方向上产生位移S,那么力F对物体做功为多少呢?然后引导学生进行如下探讨:
  
  (1)F与S方向相同时,功的大小为:FS;
  
  (2)力F与位移S两者产生θ角时,那么F与S方向一致的分力为F1,则F1=Fcosθ,那么该物体在分力F1的方向上有位移S产生,那么此时物体做功为:FScosθ。
  
  在这一教学过程中,老师要让学生明白,物体所做的功是由力与位移两个向量决定的,向量的数量积意义就体现于此。
  
  3.在向量教学中,要注重其在数学以及其他科学中的应用
  
  数学中,向量应用广泛,它既可刻画几何对象以及几何度量的问题,又可以表示重要不等式、三角函数等。例如,ab≤ab是向量数量积中的一个重要的不等式,运用该不等式的关系还可对数学中许多不等式进行证明。又如,在对三角函数进行定义时,可运用向量数量积进行定义。例如,某平面上存在两个标准正交基e1与e2,a则是这一平面上的向量,标准正交基e1与向量a产生的夹角为α,那么三角函数的定义为:。在现代科技领域中,向量还被广泛应用于设计与操控机器人、设计飞船等。
本文链接地址:http://www.oyaya.net/fanwen/view/219105.html

★温馨提示:你可以返回到 数学论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。