保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教学论文 >> 数学论文 >> 正文

借助数学教学拓展学生思维


  借助数学教学拓展学生思维
  
  文/陶永炯
  
  摘 要:在数学教学中拓展学生的数学思维是数学新课程改革的要求,它要求教师要充分发挥数学课程的优势,运用一题多解或一题多变,设计开放性的课堂,进而提高学生的思维水平。
  
  关键词:数学;思维拓展;学生
  
  当前我国的教学模式正由“应试教育”向“素质教育”转变,这也就是说,我们的数学课堂不再是简单的知识传授、应对考试,而是要通过数学教学,让学生知识技能、数学能力、思维水平等都得到相应程度的提高,最终促使学生获得全面的发展。所以,本文就从一题多解和一题多变两个方面,对如何拓展学生的思维,进行简单介绍。
  
  一、倡导一题多解,发散学生思维
  
  一题多解是在教师的引导下,让学生对一道试题从不同的角度进行思考,以获得两种以上的解题过程,这既可以对学生提出挑战,满足学生的好奇心,又可以锻炼学生思维的灵活性,活跃思路,最终提高学生的解题能力。
  
  例如,证明:三角形的一条中位线与第三边上的中线互相平分。
  
  已知:△ABC中EF是它的一条中位线,AD是第三边BC上的中线,交EF于O。
  
  求证:EF和AD互相平分。
  
  该题有多种解题思路,可以通过连结ED和FD,求证四边形AEDF是平行四边形,接着判断EF和AD互相平分。第二种,同样连结ED,通过求△AOF≌△DOE得出EF和AD互相平分,等等。在学生的思路得到肯定后,学生的自信心会得到大幅度的提高。与此同时,学生的思维也会得到发散。
  
  二、鼓励一题多变,拓展学生思维
  
  一题多变是以一道试题为基础,演变出来的不同题型,对提高学生的解题能力有着非常大的帮助,也有助于促进和增强学生思维的深刻性。
  
  例如,在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD的中点。求证:CE⊥BE。
  
  变换1:在梯形ABCD中,AB∥CD,CE⊥BE,E是AD的中点。求证:BC=AB+CD。
  
  变换2:在梯形ABCD中,AB∥CD,BC=AB+CD,CE⊥BE,判断E是AD的中点吗?为什么?
  
  ……
  
  从这道试题我们可以看出,每道试题的本质是没有变的,只不过是试题的形式在变,条件和结论之间在变等,学生通过长期的练习,不仅可拓展思维,而且对提高学习效率也有着非常重要的帮助。
  
  总之,教师要充分发挥数学的优势,使学生的思维能力在不断的练习中得到大幅度的提高,最终让学生获得更大的发展空间。
  
  参考文献:
  
  曾琼。如何在初中数学课堂教学中拓展学生思维[J]。魅力中国,2009(17)。
  
  (作者单位 青海省海西州德令哈市第三中学)
本文链接地址:http://www.oyaya.net/fanwen/view/219545.html

★温馨提示:你可以返回到 数学论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。