谈小学几何直观教学
谈小学几何直观教学
中图分类号:G623.5 文献标识码:A 文章编号:1002-7661(2013)24-0059-02
《新课程标准》指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思想,预测结果。”几何直观就是在“数学——几何——图形”这样一个关系链中让我们体会到它所带来的最大好处,图形可以帮助我们发现、描述研究的问题;可以帮助我们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。因此,在小学阶段,我们要引导学生体会到图形给我们的学习带来便利的同时,帮助学生学会研究图形,提高几何直观能力。
一、感受图形的好处
在研究数学问题的过程中,几何图形能使问题变得简明,图形能展现对象的全貌和本质,借助几何图形的直观,通过图形之间的关系,会使学生产生对相关数量之间关系的猜想,从而找到解决问题的方法。因些,在教学过程中,我们要引导学生把研究的“对象”抽象成为“图形”,再把“对象之间的关系”转化为“图形之间的关系”,帮助学生养成画图的习惯。无论是计算还是证明、逻辑、形式的结论都是在形象思维的基础上产生的,在教学中应有这样的导向,能画图时尽量画,尽量把问题、计算、证明等数学的过程变得直观,直观了就容易展开形象思维。比如:一年级学习5+5=?可以引导学生画5个圆圈,再画5个圆圈,一共10个圆圈。再比如:解决这样一个问题:在一块正方形地的每条边各栽3棵树,那么最少一共要栽多少棵树?可以引导学生学画出这样的一幅图:
图一画出来,学生便一目了然了。“一块长方形花圃,长8米。在修建校园时,花圃的长增加了3米,这样花圃的面积就增加了18平方米。原来花圃的面积是多少平方米?“这样一道题,从字面上理解有点困难,如果让学生画出图来很快就能算出原来花圃的面积是多少平方米了。倍数关系的问题学生理解起来都比较困难,如果借助线段图画出数量关系,解决起来就容易多了。
在教学过程中,让学生学会用图形思考问题是学习数学的基本能力,数与形的结合,能使我们更好地感知数学、领悟数学。
二、研究图形的方法
借助图形描述和分析问题,首先我们要学会研究图形,使学生在头脑中对图形有深刻的印象,比如认识常见的立体图形和平面图形,探索它们的性质,逐步学会用数学的眼光看待丰富的图形世界,从而体会图形在数学学习中的广泛应用。
(一)借助实物模型感知
图形的内容具有丰富的实际背景,孩子们在日常生活中最先接触的是各种各样的物体,玩的积木中有许多正方体、长方体、圆柱体,比如:他们见到的楼房、纸盒、箱子、书等,给他们以长方体的形象,他们从小玩的皮球给了他们球的形象,因此,在教学中,我们要借助实物帮助学生感知图形、研究图形。例如:一年级学习《认识图形》一课,课前,让学生自己准备一些长方体、正方体、圆柱、球等实物模型,学生在物体上找到图形后,指给小组内的同学看一看,摸一摸,说说自己的感觉。学生可能会说“我在牙膏盒上找到了正方形”,也可能会说:“我在饼干盒上找到了长方形,长方形摸起来很平”。学生通过在实际物体上找平面图形,初步体会了面在体上,通过摸平面图形,对平面有个初步的感知。然后通过描一描、印一印等活动进一步认识长方形、正方形、三角形和圆。
教师巧妙地变图形为看到见摸得着的实物直观模型,使学生在接触实际事物时进行教学,让学生所得到的感性知识与实际事物间密切地联系在一起,同时,直观几何图形模型给人以真实感、亲切感。有利于激发学生的兴趣,调动学生的积极性。
(二)运用媒体模象理解
课堂中运用多媒体教学,可以让图形“动起来”,在“运动或变换”中来研究、揭示、学习图形的性质,这样,一方面加深了对图形性质的本质认识;另一方面,对几何直观能力也是一种提升。比如:教学《认识角》一课,角的大小与边长的关系是本节课的难点,为了突破这一难点,就可以充分运用媒体资源,课件演示红角和黑角比大小,红角的两条边不断延长,延长后再来和黑角比较,发现这两个角的张口是一样大的,得出结论,红角等于黑角。黑角的张口变大,和红角比较,这时的黑角大于红角,从而使学生理解角的大小与边的长短没有关系,两边张口越大,角越大,张口越小,角越小。这样把静态的角变成动态的角,调动了学生的积极性,达到了变抽象为直观,变静为动,化难为易的目的,有效地突破了教学难点。
模象直观还能通过人为的手段消除或减弱实物的非本质因素对本质因素的掩蔽作用。如在图片或模型中,用着色、放大、对比等手段改变非本质因素的强度以突出本质因素。它可以突破时间和空间的限制,来扩大感性材料的来源。例如:讲解这样一道题:一张长方形纸,剪去一个角,还剩几个角?就可以运用多媒体演示:一把剪刀沿一个地方剪掉一个角,然后运用着色突出剩下的部分,让学生在演示中体会到:长方形有4个角,剪的方法不同,所剩下的角的个数也就不相同。
研究图形时充分运用多媒体计算机的优势,把图形成由静态变动态,把知识形成的全过程淋漓尽致地呈现在学生的眼前。学生在学习中处于一种动眼、动耳、动脑、动口、动手尝试、探求、发现的境界之中,保持兴奋、愉悦、渴求上进的心理状态,学生的主体作用就能得到充分、有效地发挥,整体教学效果提高,优化教学过程。
总之,图形在我们的生活中随处可见,我们的生活因为有了图形而绚丽多姿,同样,数学学习也离不开图形,让学生体会到图形在我们数学学习中的价值,学生自然会产生对研究图形的浓厚兴趣,教师运用恰当的教学方法帮助学生积累丰富的学习图形的经验,使学生对图形的性质有更深入的了解,为更好地运用图形解决问题打下坚实的基础。
本文链接地址:http://www.oyaya.net/fanwen/view/224359.html
中图分类号:G623.5 文献标识码:A 文章编号:1002-7661(2013)24-0059-02
《新课程标准》指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思想,预测结果。”几何直观就是在“数学——几何——图形”这样一个关系链中让我们体会到它所带来的最大好处,图形可以帮助我们发现、描述研究的问题;可以帮助我们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。因此,在小学阶段,我们要引导学生体会到图形给我们的学习带来便利的同时,帮助学生学会研究图形,提高几何直观能力。
一、感受图形的好处
在研究数学问题的过程中,几何图形能使问题变得简明,图形能展现对象的全貌和本质,借助几何图形的直观,通过图形之间的关系,会使学生产生对相关数量之间关系的猜想,从而找到解决问题的方法。因些,在教学过程中,我们要引导学生把研究的“对象”抽象成为“图形”,再把“对象之间的关系”转化为“图形之间的关系”,帮助学生养成画图的习惯。无论是计算还是证明、逻辑、形式的结论都是在形象思维的基础上产生的,在教学中应有这样的导向,能画图时尽量画,尽量把问题、计算、证明等数学的过程变得直观,直观了就容易展开形象思维。比如:一年级学习5+5=?可以引导学生画5个圆圈,再画5个圆圈,一共10个圆圈。再比如:解决这样一个问题:在一块正方形地的每条边各栽3棵树,那么最少一共要栽多少棵树?可以引导学生学画出这样的一幅图:
图一画出来,学生便一目了然了。“一块长方形花圃,长8米。在修建校园时,花圃的长增加了3米,这样花圃的面积就增加了18平方米。原来花圃的面积是多少平方米?“这样一道题,从字面上理解有点困难,如果让学生画出图来很快就能算出原来花圃的面积是多少平方米了。倍数关系的问题学生理解起来都比较困难,如果借助线段图画出数量关系,解决起来就容易多了。
在教学过程中,让学生学会用图形思考问题是学习数学的基本能力,数与形的结合,能使我们更好地感知数学、领悟数学。
二、研究图形的方法
借助图形描述和分析问题,首先我们要学会研究图形,使学生在头脑中对图形有深刻的印象,比如认识常见的立体图形和平面图形,探索它们的性质,逐步学会用数学的眼光看待丰富的图形世界,从而体会图形在数学学习中的广泛应用。
(一)借助实物模型感知
图形的内容具有丰富的实际背景,孩子们在日常生活中最先接触的是各种各样的物体,玩的积木中有许多正方体、长方体、圆柱体,比如:他们见到的楼房、纸盒、箱子、书等,给他们以长方体的形象,他们从小玩的皮球给了他们球的形象,因此,在教学中,我们要借助实物帮助学生感知图形、研究图形。例如:一年级学习《认识图形》一课,课前,让学生自己准备一些长方体、正方体、圆柱、球等实物模型,学生在物体上找到图形后,指给小组内的同学看一看,摸一摸,说说自己的感觉。学生可能会说“我在牙膏盒上找到了正方形”,也可能会说:“我在饼干盒上找到了长方形,长方形摸起来很平”。学生通过在实际物体上找平面图形,初步体会了面在体上,通过摸平面图形,对平面有个初步的感知。然后通过描一描、印一印等活动进一步认识长方形、正方形、三角形和圆。
教师巧妙地变图形为看到见摸得着的实物直观模型,使学生在接触实际事物时进行教学,让学生所得到的感性知识与实际事物间密切地联系在一起,同时,直观几何图形模型给人以真实感、亲切感。有利于激发学生的兴趣,调动学生的积极性。
(二)运用媒体模象理解
课堂中运用多媒体教学,可以让图形“动起来”,在“运动或变换”中来研究、揭示、学习图形的性质,这样,一方面加深了对图形性质的本质认识;另一方面,对几何直观能力也是一种提升。比如:教学《认识角》一课,角的大小与边长的关系是本节课的难点,为了突破这一难点,就可以充分运用媒体资源,课件演示红角和黑角比大小,红角的两条边不断延长,延长后再来和黑角比较,发现这两个角的张口是一样大的,得出结论,红角等于黑角。黑角的张口变大,和红角比较,这时的黑角大于红角,从而使学生理解角的大小与边的长短没有关系,两边张口越大,角越大,张口越小,角越小。这样把静态的角变成动态的角,调动了学生的积极性,达到了变抽象为直观,变静为动,化难为易的目的,有效地突破了教学难点。
模象直观还能通过人为的手段消除或减弱实物的非本质因素对本质因素的掩蔽作用。如在图片或模型中,用着色、放大、对比等手段改变非本质因素的强度以突出本质因素。它可以突破时间和空间的限制,来扩大感性材料的来源。例如:讲解这样一道题:一张长方形纸,剪去一个角,还剩几个角?就可以运用多媒体演示:一把剪刀沿一个地方剪掉一个角,然后运用着色突出剩下的部分,让学生在演示中体会到:长方形有4个角,剪的方法不同,所剩下的角的个数也就不相同。
研究图形时充分运用多媒体计算机的优势,把图形成由静态变动态,把知识形成的全过程淋漓尽致地呈现在学生的眼前。学生在学习中处于一种动眼、动耳、动脑、动口、动手尝试、探求、发现的境界之中,保持兴奋、愉悦、渴求上进的心理状态,学生的主体作用就能得到充分、有效地发挥,整体教学效果提高,优化教学过程。
总之,图形在我们的生活中随处可见,我们的生活因为有了图形而绚丽多姿,同样,数学学习也离不开图形,让学生体会到图形在我们数学学习中的价值,学生自然会产生对研究图形的浓厚兴趣,教师运用恰当的教学方法帮助学生积累丰富的学习图形的经验,使学生对图形的性质有更深入的了解,为更好地运用图形解决问题打下坚实的基础。