保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教学论文 >> 数学论文 >> 正文

教学生学会“试探”


 

心理学告诉我们,解决问题包括发现问题、分析问题、提出假设方案和检验假设方案四个相互联系的阶段。小学生的解题过程,与解决问题的过程很相似,又稍有不同:条件、问题是现成的。较多的题可以凭着学过的知识与技能,按教材提供的方法、步骤直接解答出来,由于一举成功,“提出假设方案”与“检验假设方案”两个阶段几乎揉合一块。但也有部分数量关系或空间关系比较复杂、隐蔽的问题,没有现成的解答方案,解这类题,经历“提出假设方案”和“检验假设方案”两个阶段比较明显。这里,预先提出的仅仅是“假设”的方案,不一 定是切实可行的,需要在解题的思考过程中不断地与条件、问题相对照,不断地修正或推翻原假设,提出新的假设,直至问题的解决。也就是说,解这类题往往需要经历“试探碰壁→返回又试→又碰壁→再试……→试探成功”的过程。

笔者调查发现,目前有相当部分的小学高年级学生在解题中还没有学会“试探”。容易的题就凭“经验”一解了之,当解题遇到困难时,或者因为缺乏试探的心理准备,把问题搁置一旁;或者因为缺乏试探的策略,面对问题而百思不解;或者因为缺乏不懈的试探精神,使解题半途而废。

要改变这种状况,关键是:教师做出试探示范,教给具体的试探策略,鼓励学生自行试探。在某些例题的教学中,在某些稍难题的练前指导、练后评讲时,教师可以故意模拟各种发生率高的错误思路、行不通的方法,沿着这种思路、方法试探下去,最终发现此路不通。这时要教育学生不能泄气,应冷静地回过头来,再从整体上审视条件与问题,重组眼前的信息和记忆中存储的信息,挖掘它们之间的潜在关系,调整思路或方法,重新试探。在试探的示范中,特别要针对具体问题,教学生如何发现“此路不通”,如何再进行条件、问题的分析综合,发现它们之间新的联系。

例如除法试商,本来就有个“试”字,试探过程十分明显。在教学试商时,要突出“初商→试不准→调商→定商”的试探过程。新教材就很注重“试”的过程,例题与习题中均出现试不准的情况,启发学生根据初商与除数的积的情况,逐渐调准。我们应领会新教材的编写意图,通过浅显事例(如137个糖果平均分给16个同学,137÷16),作出试商示范。首先突出两种情况可以判断试的商不准:(1)余数大于除数,说明商大校(如果商6,每人分6个糖果,才分掉96个,还剩41个,每人还可以再分2个,说明商6太校)(2)商与除数的积大于被除数,说明商太大。(如果商9,每人分9个糖果,要分掉144个,而实际只有137个,缺少7个,每人不够分9个,商9太大。)其次,让学生悟出调商的原则:商大了要调小,商小了要调大,调大调小的幅度,要看初商与除数的积同被除数比相差多少(剩下的糖果越多或缺少的糖果越多,调的幅度就越大)。

思考稍难的应用题,经常需要运用分析(从问题推向条件)、综合(从条件推向问题)相结合的策略。要经历“初定‘中间问题’→这个中间问题从条件无法推出或者对求问题无用→更换中间问题→找准中间问题,确定解题分几步,每步求什么”的试探过程。像应用题“一个化肥厂原计划5天完成一项任务,由于每天多生产化肥3.6吨,结果3天就完成任务。原计划每天生产化肥多少吨?”

教师应做出解题的试探示范:先用分析法,要求“原计划每天生产化肥多少吨”,往往习惯于寻找“原计划生产的总吨数”与“原计划生产的天数”这两个“需求”的中间问题;再从条件推向问题,“原计划生产的总吨数”显然是无法预先求出的。于是,条件与问题无法“接轨”。“需求”与“可求”的矛盾,说明刚才的试探是失败的。此时,应该再回到题目的整体,发现条件与条件、条件与问题的新的联系:(1)同一项任务,原计划用5天完成,而实际只用3天,少用了(5-3)天;(2)实际每天比原计划多生产3.6吨,实际生产的3天里,一共多生产(3.6X3)吨;(3)思索(1)、(2)的因果关系,为什么实际能比原计划少用2天?正因为实际3天里,除了完成原计划里3天的产量外,还多生产了(3.6x3)吨,所以这(3.6x3)吨顶替了原计划里2天的产量。

这样,可以把实际3天多生产的吨数转化为原计划里2天的产量,原计划里的2天与相对应的产量(10.8吨)的关系显现了,问题便可求了。至此,条件与问题“接轨”,“需求”与“可求”吻合,试探获得成功。


《教学生学会“试探”》
本文链接地址:http://www.oyaya.net/fanwen/view/55261.html

★温馨提示:你可以返回到 数学论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。