思维训练
平行四边形、正方形的各个部分与圆柱各部分之间的关系,从而概括出圆柱体侧面积的计算公式。通过这一系列的操作、观察、思考、概括,不仅使学生理解并掌握了圆柱体侧面积公式,而且也增强了学生的操作意识,提高了操作能力,更培养了学生变抽象为具体的思维方法。
3.求同与求异。有些数学知识之间既有差别又有千丝万缕的联系。恰当地运用求同与求异的思维方法,通过对相关知识的比较,能够有效地促进学生思维发展。
(1)对同一知识进行变式比较,即求同。例如:在教学“平行四边形的认识”这一内容时,将平行四边形变换不同的位置进行比较(如下图):
附图{图} 通过观察比较,学生认识到几种图形尽管摆放的位置不同,但其本质属性是相同的,即 “对边分别平行的四边形”,因为它们都是平行四边形。
(2)对易混知识不同点的比较,即求异。例如:解答“按比例分配”应用题经常要运用 “求一个数的几分之几是多少”的方法。但是,按比例分配和分数乘法这两类应用题又存在着一定的区别,即前者要通过总份数把比转化成各个部分量是总量的几分之几,再用乘法计算;而后者通常是直接或间接具备所求问题的分率。
显然,通过运用求同与求异的思维方法,不但使学生构建了完整的知识体系,而且也发展了学生多极化的思维方法,有利于克服思维定势。
4.一般与特殊。唯物辩证法认为,任何事物都存在着共性与个性。在教学中教师应注意引导学生观察、思考数学知识的一般性与特殊性,以促进学生思维能力的提高。例如:在教学长方形周长的计算方法后,教师通过引导学生比较长方形和正方形周长的计算方法,从而得出:这两种图形的周长都是将每个图形的四条边的长相加,这是它们的一般性。而正方形四条边长度相等,它的周长等于它的边长的4倍;长方形对边长度相等,它的周长等于它的长加宽和的2倍,这是它们的特殊性。最后得出结论:正方形是特殊的长方形。
教师通过引导学生感知一般与特殊的关系,从而使学生树立起具体问题具体分析的思维方法,培养学生灵活处理实际问题的能力。
综上所述,在小学数学教学中,有目的、有计划地对学生实施思维训练(第2页),有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。 《思维训练(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/58406.html
3.求同与求异。有些数学知识之间既有差别又有千丝万缕的联系。恰当地运用求同与求异的思维方法,通过对相关知识的比较,能够有效地促进学生思维发展。
(1)对同一知识进行变式比较,即求同。例如:在教学“平行四边形的认识”这一内容时,将平行四边形变换不同的位置进行比较(如下图):
附图{图} 通过观察比较,学生认识到几种图形尽管摆放的位置不同,但其本质属性是相同的,即 “对边分别平行的四边形”,因为它们都是平行四边形。
(2)对易混知识不同点的比较,即求异。例如:解答“按比例分配”应用题经常要运用 “求一个数的几分之几是多少”的方法。但是,按比例分配和分数乘法这两类应用题又存在着一定的区别,即前者要通过总份数把比转化成各个部分量是总量的几分之几,再用乘法计算;而后者通常是直接或间接具备所求问题的分率。
显然,通过运用求同与求异的思维方法,不但使学生构建了完整的知识体系,而且也发展了学生多极化的思维方法,有利于克服思维定势。
4.一般与特殊。唯物辩证法认为,任何事物都存在着共性与个性。在教学中教师应注意引导学生观察、思考数学知识的一般性与特殊性,以促进学生思维能力的提高。例如:在教学长方形周长的计算方法后,教师通过引导学生比较长方形和正方形周长的计算方法,从而得出:这两种图形的周长都是将每个图形的四条边的长相加,这是它们的一般性。而正方形四条边长度相等,它的周长等于它的边长的4倍;长方形对边长度相等,它的周长等于它的长加宽和的2倍,这是它们的特殊性。最后得出结论:正方形是特殊的长方形。
教师通过引导学生感知一般与特殊的关系,从而使学生树立起具体问题具体分析的思维方法,培养学生灵活处理实际问题的能力。
综上所述,在小学数学教学中,有目的、有计划地对学生实施思维训练(第2页),有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。 《思维训练(第2页)》