保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教学论文 >> 数学论文 >> 正文

非常规数学问题解法探微


nbsp;   用数学归纳法可以证明,一般情况下,若圆周上原来摆着2n枚棋子,最多操作2n次后一定全剩下黑子。
   
     例4 有11只杯子都口朝上放着,然后将它们任意翻偶数只算一次操作(翻过的也可以再翻)。证明:无论操作多少次,都不能使11只杯子都口朝下。
   
     解 将口朝上的杯子记为1,口朝下的记为-1,然后计算每操作一次后11只杯子乘积的正负号:
   
     开始,11只杯子都口朝上,所以乘积的符号为:111=1。
   
     当翻动n个杯子(n为偶数且n≤10)使其口朝下时,乘积的符号为:
   
     111-n·(-1)n=1·1=1
   
     继续讨论可知,无论n是小于11的什么偶数,乘积的正负号均为正,而11只杯子都口朝下时,乘积为(-1)11=-1,故不可能办到。
   
     本问题的一般结论是:奇数个杯子每次翻动偶数个或偶数个杯子每次翻动奇数个,都不能使所有杯子都口朝下。
   
     3 抽屉原理抽屉原理是证明“存在性”问题的有力工具,其最基本形式是:将n+1(或更多)个元素任意放入n个抽屉中,则至少有一个抽屉中至少有两个(或更多)元素。抽屉原理的正确性简单而显然,但具体运用并不容易,困难之处在于怎样设置抽屉,把一个实际问题转化为抽屉原理问题。
   
     例5 世界上任意6个人中,总有3个人,或彼此都认识,或彼此都不认识。
   
     这是有名的Ramsey问题,要用抽屉原理来解。
   
     对6个人中的任一个人,不妨设为A来说,除A外的其余5人可分为同A相识或不同A相识两类(即两个抽屉),由抽屉原理可知,至少有一类中至少有3个人。分别讨论如下:
   
     如果同A都认识的那一类中至少有3人,若有3人互相都不认识,则结论成立;否则至少有两个人互相认识,而这两人又都同A认识,故有3人互相认识,结论也成立。
   
     如果同A都不认识的那一类中至少有3人,若其中有3人互相认识,则结论成立;否则,至少有两人彼此不认识,但这二人又都与A互不认识,故这时有3人互相不认识,结论也成立。
   
     此问题也可以用染色法来证明:
   
     在平面上用A1,A2………A6来代表6个人,设它们无三

点共线。将互相认识的两人连一条红线,否则连一条蓝线。问题就转化为:在这15条连线中要证明至少有一个同颜色的三角形。

   
     证明:考虑由A1出发的5条线,因为只有红、蓝两种颜色(两个抽屉),所以至少有3条为同色,不妨设A1A2、A1A3、A1A4为红色。其次,再考虑△A2A3A4三边的颜色,若均为蓝色则结论成立(此三人互相不认识);否则,至少有一条边为红色,例如A2A3,则△A1A2A3的三边都为红色,结论也成立(此三人彼此都认识)。
   
     例6 已知某学者在五年期间内每月至少发表一篇文章,又知他每年至多发19篇,则可得结论:他必在某连续的几个月内恰好发文24篇,试证明之。
   
     解 设此人在5年内(60个月)每月发文数为a1,a2……a60,又设此数列前n项和为S1,S2,…,S60≤19×5=95。
   
     如果他在某连续的几个月内恰发文24篇,则说明存在两个编号i和j,使得
   
     Sj=Si+24  (1≤i<j≤60)成立。
   
     又S1+24,S2+24…,S60+24≤95+24=119共60个数,连同S1,S2…S60共120个数,将它们写在一起,即
   
     1≤S1,S2…S60,S1+24…S60+24≤119
   
     上式表明,在区间〔1,119〕中写了20个整数(元素),但〔1,119〕上只有119个不同的整数(设为抽屉),由抽屉原理知,在S1,S2…S60+24这120个整数中必有两个相等。又因为S1<S2…<S60彼此不相等,从而S1+20<S2+24<…<S60+24也各不相等,因此彼此相等的那两个数必来自两组之中,不妨设为Sj与Si+24相等,即Sj=Si+24成立。
   
     4 逻辑推理有一些涉及逻辑推理方面的问题,可通过逻辑推理方法,将矛盾结论排除,找出合理结论。推理顺序有顺推法和逆推法。
   
     例7 要分派A、B、C、D、E五人去执行一项任务,但按实际情况必须满足以下条件:
   (1)若A去,B也去;
   (2)B、C两人中至少有一人去;
   (3)B、C两人中必须去且只能去一人;

《非常规数学问题解法探微》
本文链接地址:http://www.oyaya.net/fanwen/view/61077.html

★温馨提示:你可以返回到 数学论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。