保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教学论文 >> 英语论文 >> 正文

Applications of Brain-Based Research to Second Language Teaching and Learning: Part 1


by Mary Ann Christison

This article is adapted from the author's plenary speech at the 32nd Annual TESOL Convention in Seattle, Washington. The informal nature of the presentation has been retained. Part 2 will appear in the June/July 1999 issue.

The topic of brain-based teaching and learning has intrigued me for the past several years and has received much attention in educational circles. Brain-based teaching and learning focuses on how the brain learns best and how language teachers can learn to understand and use this knowledge to help second language students learn English quickly and efficiently. In effect, we are talking about creating second language curricula that are brain-compatible.

I would like, first, to focus on some of the factors leading to this surge of interest in the human brain. For years, the only way we acquired information about how the brain worked was from autopsy examinations. Although these studies have been important, they provide only limited information about the human brain. Recent technological advances, however, have made it possible for us to study the living brain, and that is exciting.

Brain Biology 101

Few of us can recall much about brain biology from our studies because, at that time, we probably did not believe that the information about the brain related much to our career goals as teachers. My goal here, however, is to convince you of the relevance of brain biology to your work as language teaching professionals.

The Importance of the Limbic System

The cognitive side of learning usually receives a great deal of attention, but the affective side of learning is also important. Neuroscientists are just now mapping this important component of learning (Jensen, 1998). We know that blood flows to different parts of the brain, depending on the mental activities in which a person is involved. For instance, when we feel angry, threatened, anxious, or fearful, the blood flows from the neocortical area in the brain to the amygdala in the limbic area. This is called downshifting (MacLean, 1990). The limbic area of the brain is not the area of logical thought and decision making. These processes takes place in the neocortex. When downshifting occurs, the neocortex does not get sufficient glucose to function properly, causing the amygdala, in essence, to hijack the brain--which prevents us from making rational decisions.

Emotional Intelligence

In Emotional Intelligence, Goleman (1995) explains this feature of the human brain and why it is an important concept for the students we teach. For example, when we are angry or fearful, we should not, at that moment, make decisions about how to act. We need to have decided on a course of action before we find ourselves in these situations. Teaching students about how the brain functions and how to manage emotions has enormous implications for the problems of violence facing schools everywhere. Establishing violence-free schools where children feel safe begins with giving children tools to understand and manage emotions.

Goleman (1995) states that one's emotional quotient (EQ) may be more important than one's IQ in determining success in life. His support for this claim is based in part on research studies conducted at Harvard in the 1960s (Shoda, Walter, and Peake, 1990). This research, called the Marshmallow Study, involved a group of 4-year-olds who were given the choice of eating a marshmallow immediately or waiting to do so.

The diagnostic power of how a moment of impulse was handled by these 4-year-olds did not become clear until many years later, when researchers tracked down these same children as adolescents. "The emotional and social difference between the grab-the-marshmallow preschoolers and their gratification-delaying peers was dramatic" (Goleman, 1995, p. 81). Those who had resisted the temptation of eating the marshmallow immediately, at age 4, were now, as adolescents, more socially competent and self-reliant, were superior students, and had dramatically higher scores on the Scholastic Aptitude Test (SAT) tests. In fact, for those children who had waited the longest, there total scores were, on average, 210 points higher than those of the children who had grabbed eagerly. A delay-of-gratification test at age 4 is twice as powerful a predictor of what SAT scores will be as the IQ test is at age 4. IQ becomes a stronger predictor only after children learn to read. The importance of emotional self-regulation should therefore not be underestimated.

The Brain and Memory

Memory is often described as being one fixed thing. But memory is not a fixed thing or a singular skill; it is a process (Jensen, 1998). There is no one location in the brain involved in memory formation or one single pathway through which memories are retrieved. Our ability to recall information often depends on which pathway we access: procedural, episodic, semantic, and sensory.

Procedural Memory

Each time you participate in any endeavor, a certain number of neurons are activated. When you repeat the action, these same neurons respond again. The more times you repeat an action, the more efficient your brain becomes. Eventually, you need only trigger the beginning of the sequence of an action for the remaining pieces to fall into place like clockwork, almost without having to think about it. This type of memory, developed through repeated actions, is called procedural memory. We use this type of memory many times throughout the day in brushing our teeth, tying our shoes, and getting dressed. Dissecting the different pieces of a task you have in procedural memory and being able to teach others how to perform that task are two very different and difficult things that take time and effort. This is why the best skier is not always the best ski instructor.

Episodic Memory

Another kind of memory is episodic memory. Events recalled in memory are often emotionally charged--positively or negatively. Emotion is a hook that helps us remember events and episodes in our lives. However, memories of episodic events may not be completely accurate. Although we should not trust the accuracy of episodic memory for this reason, it does provide important clues to teachers concerning the retention of information. We remember events when they ha

《Applications of Brain-Based Research to Second Language Teaching and Learning: Part 1》
本文链接地址:http://www.oyaya.net/fanwen/view/67362.html

★温馨提示:你可以返回到 英语论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。