《分解因式》中考热点透视
分析:根据完全平方公式a2±2ab+b2= (a±b)2的特点,若
从另外一个角度考虑,“一个整式的完全平方”中所指的“整式”既可以是上面所提到的多项式,也可以是单项式. 注意到9x2=(3x)2,1=12,所以,保留二项式9x2 + 1中的任何一项,都是“一个整式的完全平方”,故所加单项式还可以是-1或者 - 9x2,此时有9x2 + 1-1=9x2=(3x)2,或者9x2 + 1-9x2=12.
综上分析,可知所加上的单项式可以是±6x、20.25x4、-1或者 - 9x2.
四、数形结合型
例7(2002陕西)如图1,在长为a 的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( D )
A.a2-b2=(a十b)(a—b)
B.(a+b)2=a2+2ab 十b2
C.(a-b)2=a2-2ab+b2
D.(a十2b)(a-b)==a2+ab -2b2
分析:图1表示的是a2-b2,图2表示的是(a十b)(a—b),两者面积相等,所以a2-b2=(a十b)(a—b).
故选A.
例8(2002年山东省济南市中考题)请你观察图3,依据图形面积间的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是_____________.
图3
分析:图中所表示的整个正方形的面积是x2,两个小正方形的面积分别是y2与(x-y)2,利用这些数据关系,结合图形便可以写出以下公式:
x2-2xy+y2 = (x-y)2,或者x2-y2 = (x+y)(x-y).
当然,在没有限定的情况下,也能写成乘法公式.
根据几何图形的特征,研究其中蕴含的数学公式,是“数形结合思想”的具体体现.
例9(2003山西)有若干张如图4所示的正方形和长方形卡片,